Creating and Configuring an Immutable Database
for Secure Cloud Audit Trail and System Logging

Bob Duncan
Computing Science
University of Aberdeen
Aberdeen, UK
Email: bobduncan@abdn.ac.uk

Abstract—Conventional web based systems present a multi-
plicity of attack vectors and one of the main components, the
database, is frequently configured incorrectly, frequently using
default settings, thus leaving the system wide open to attack.
Once a system has been attacked, valuable audit trail and
system log data is usually deleted by the intruder to cover their
tracks. Considering the average industry time between breach
and discovery, there is often little or no forensic trail left to follow.
While this presents a significant challenge to these conventional
systems, when such a system uses cloud computing, the challenge
increases considerably. In a conventional setting, the enterprise
can use a robust firewall to afford some protection to enterprise
users, however in a cloud setting, the enterprise firewall will
not extend to external services, and a lot more people than are
often considered can have access to cloud resources. Of equal
importance is that in cloud settings, where new instances may be
automatically spooled up and shut down to follow the demand
curve, any data stored on the running instance before shut down
will be irretrievably lost. We demonstrate how the configuration
of a simple immutable database, running on a separate private
system can go a long way to resolving this problem.

Index Terms—Cloud security and privacy; immutable database;
forensic trail.

I. INTRODUCTION

Achieving information security is not a trivial process, and
in the context of cloud computing, it becomes increasingly
more difficult. Because cloud technology is enabled by the
Internet, one of the key weaknesses comes from web services,
which invariably are structured with a database back-end.
There are a host of well understood vulnerabilities surrounding
the usage of modern databases, and while there are a number
of mitigating strategies that can be deployed, they seem not
to be sufficient, as evidenced by their continual recurrence on
annual security breach report lists. This failure to take even
simple, inexpensive measures to try to mitigate the problem
is tantamount to aiding and abetting the intruders. Invariably,
once embedded in a system, the first goal of the intruder is
usually to delete the forensic trail to eliminate all sign of their
intrusion. Duncan and Whittington [1] proposed an interim
solution to try to address this problem, and this paper extends
that previous work.

Duncan and Whittington [2] have written about the diffi-
culties surrounding proper audit of cloud based systems. They
talked about the need for enterprises to maintain a proper audit

Mark Whittington
Business School
University of Aberdeen
Aberdeen, UK
Email: mark.whittington@abdn.ac.uk

trail in their systems, and about the weaknesses arising from
poor configuration of databases, particularly in the context
of cloud systems [3]. They have proposed addressing this
problem through the use of an immutable database for the
purpose of secure audit trail and system logging for cloud
applications [4]. They used this approach to develop a proposal
for using an immutable database system to log audit trail
data and forensic system data [1]. The main idea here was to
start with a simple, easy to configure system utilising existing
technology to assist in resolving this challenging security
requirement, with the intention of adapting the use of this
idea to address the as yet unresolved issue of retaining cloud
audit trail and forensic data.

As today’s corporate enterprises evolve, there is an ever
changing move to develop more and more complex software.
This presents a considerable challenge in the development of
ever more complex software systems, especially for configura-
tion, because security has traditionally taken a back seat to the
functionality of the software programmes. The vast majority of
software and software development tools have their origin in a
time when software security was not a major concern. Many of
these pieces of software were developed when little thought
was given to security. Before the internet took off, security
was just a case of keeping the computer under lock and key.
However, the internet changed all that in a big way. Anyone
with access to the internet could then access any enterprise
system connected to the internet, and with sufficient ingenuity,
could gain access to poorly secured enterprise systems.

This is when poorly written software would come back to
haunt enterprises. Few people thought about potential vulnera-
bilities in operating systems, or software systems — excepting
potential attackers. A huge industry sprung up around finding
vulnerabilities in operating systems and software systems
that could be exploited. Many standards set for operating
systems, software systems, systems such as email systems
go back decades, back to the pre-internet days. By adding
more and more complex software onto already vulnerable
operating systems and software systems, the security problems
are compounded. To this, we can add the lack of robustness
of approach to analysing audit trail and server logs.

Some five years ago in 2012, Trustwave [5] were reporting
an average time taken by enterprises of 6 months between

breach and discovery. Discovery was often made by third
parties external to the enterprise, rather than by the enterprise
themselves. This time lag between breach and discovery has
been reduced, but nevertheless remains a concern, particularly
in the light of forthcoming legislation, such as the EU General
Data Protection Regulation (GDPR) [6]. Looking at the latest
security breach reports, the average time between breach and
discovery is still in the range of several weeks to months,
meaning that it is clear that many enterprises will be unable
to comply with the requirement to report any breach within 72
hours. This would suggest that many firms are not monitoring
their systems properly, do not maintain proper audit trails,
thus leading to inadequacy in retaining a proper forensic trail
to understand exactly what information has been accessed,
modified or deleted.

Thus, we can see that many enterprises are adding ever
more complex software on top of already weak and vulnerable
systems, are often failing to analyse server logs properly, and
are failing to effectively configure ever more complex systems
securely, leading to an inability to understand when they have
been breached.

In this paper, we outline how we might approach developing
a solution to satisfy these issues and concerns. In Section II
we provide some background and discuss the motivation for
this work, and in Section III we discuss what an immutable
database needs to be. In Section IV, where we outline how
we can create and configure an immutable database using
existing software, in this case we have chosen MySQL for
illustrative purposes. In Section V, we discuss typical attack
vectors against database systems. In Section VI, we explain
the detailed mechanics of how to create and configure a secure
immutable database server on which to host our proposed sys-
tem. In Section VII, we discuss weaknesses, how to mitigate
them, and how to move forward to provide further improved
levels of security in order to minimise the possibility for
attackers to succeed in any attack on this valuable resource.
In Section VIII, we discuss our conclusions and future work.

II. BACKGROUND AND MOTIVATION

In the early years of enterprise computing, a mainframe
computer was used to process all the enterprise’s information
needs. Of course, this option was only open to the largest enter-
prises. As computer systems evolved, following the prediction
of Moore’s Law [7], this computing model also evolved,
opening up more opportunities for ever smaller organisations
to take advantage of the benefits offered by computerising their
information and process systems. Once the internet arrived,
opportunities increased significantly, but this brought with it
additional exposure to the risks of poor security, traditionally
an area given little thought.

Security practices started to evolve to try to keep up with
this changing business environment, including the develop-
ment of sophisticated enterprise firewalls. The development of
new paradigms such as mobile computing, Bring Your Own
Device (BYOD) and cloud computing, started to offer massive
new opportunities, yet the increased risks associated with

these practices were slow to be addressed. Assumptions such
as that enterprise firewalls would protect all enterprise data,
including on mobile computing, BYOD and cloud systems
were erroneous. When cloud computing enabled the Internet
of Things (IoT) and Big Data to gain huge traction, these erro-
neous assumptions continued, without considering the further
increase in risks brought by the many inherent weaknesses
introduced by this new technology.

As the business environment is constantly changing, so
are corporate governance rules and this would clearly imply
changing security measures are needed to keep up to date.
Many managers are unable, unwilling or unsure of how to
define proper security goals [8] [9] [10]. With more emphasis
being placed on responsibility and accountability [10]-[14],
social conscience [15]-[17], sustainability [18]-[22], resilience
[23]-[29] ethics [17], [30]-[32] and Corporate Social Respon-
sibility (CSR) [33]-[40], there is a need to consider more
than the traditional security requirements of Confidentiality,
Integrity and Availability (CIA).

Responsibility and accountability are, in effect, mechanisms
we can use to help achieve all the other security goals. Since
social conscience and ethics are very closely related, we
can expand the traditional CIA triad to include sustainability,
resilience and ethics (SRE) [41]. Thus expanding security
requirements can not only help address some of the short-
comings of agency theory, but can also provide a perfect fit to
stewardship theory. Stewardship carries a broader acceptance
of responsibility than the self-interest embedded in agency.
This breadth extends to encourage stewards to act in the
interests of enterprise owners as well as society and the
environment as a whole [42]. Broadening the definition of
security goals provides a more effective means of achieving
a successful cloud audit, although the additional complexity
cloud brings will potentially complicate the audit trail.

A fundamental issue with anything cloud related is that
while the software being used works well on their in-house
systems, it will not necessarily be as secure when running
on cloud, since enterprise firewalls will no longer provide
the protection that enterprises traditionally relied on. Often,
enterprises fail to realise just how many people may have
access to their data in cloud based systems. While Cloud
Service Providers (CSP)s often vet their staff to exacting
standards, often their temporary staff providers do not. A
favourite trick of attackers is to have one of their team be
employed in a CSP’s datacenter in order to have better access
to many potential targets. Where a risk is identified, it can
be quantified and properly addressed or mitigated. Whereas,
an unrecognised risk can pose a very serious threat to an
enterprise.

Often enterprises simply load their secure enterprise soft-
ware onto cloud systems and assume they will still be secure.
While the software may very well run in a functional way,
the enterprise can not be assured that these systems will run
securely. A major cloud issue which has yet to be resolved
[43]-[45] is that once an attacker breaches a cloud system,
there is nothing to stop them adjusting or deleting both the

audit trail and the forensic trail of such systems. A less obvious
weakness arises when systems are automatically scaled up,
and down, to meet demand. Often, these systems assiduously
collect server log data, including audit and forensic trail data,
but fail to record this data securely elsewhere, meaning that
as each instance is shut down to match falls in demand, these
records are lost for ever [46].

In this paper, we use the MySQL relational database man-
agement system (RDBMS) to illustrate what is currently possi-
ble. While not all databases are identical, many exhibit similar
weaknesses, often arising through improper configuration. In
the next stage of our research, we will compare and test
a number of SQL, NoSQL and NewSQL systems to gain
a better understanding of how well each might perform for
our purposes. MySQL, a RDBMS, has long been the most
popular database globally, powering large scale websites such
as Google, Facebook and Twitter, no doubt helped by its open
source nature. The community is very well defined.

NoSQL, on the other hand, does not use SQL and can be
considered a non-relational database, meaning it is table-less,
the thought being it will be easier to manage. It also offers
higher flexibility, newer data models, is mostly open source
and low cost, offering scalability through support for Map
Reduce, with no need for detailed database models. On the
other hand, the community is not well defined, it is lacking
in user tools, both for analysis and performance testing, and
lacks standardization as well as not complying with Atomicity,
Consistency, Isolation, and Durability (ACID), but instead
relying on complying with Basically Available, Soft state,
Eventual consistency (BASE). This is likely to be a major
barrier to overcome when considering the importance of ACID
compliance for both the audit and forensic trails.

NewSQL, on the other hand, tries to bridge the gap between
SQL systems and NoSQL systems, offering to combine the
ACID guarantees of SQL with the scalability and high perfor-
mance of NoSQL. Again, being a relatively young technology,
is suffers from many of the drawbacks of NoSQL, but does at
least offer ACID compliance.

Clearly, there will be benefits and drawbacks in the case
of each different database offering, and it will be necessary
to clearly identify the specific details of which will offer the
best utility for our purposes.

Often, the software environment chosen to integrate with the
database is often subject to the same poor configuration, thus
leading to the ongoing success of attackers. These weaknesses
in configuration are frequently exploited by attackers, and
there is often a poor understanding of how proper use of the
audit trail can help to improve security significantly. Thus, we
shall first discuss the purpose of audit and the significance of
the audit trail.

A. Audit and the Audit Trail

There are many areas of business activity that merit diligent
checking and verification by an objective person or organi-
zation from outside the organization itself. Some of these
may be undertaken voluntarily by the firm, others such as the

audit of financial systems and results are mandated. Clearly
cloud computing audit is a new, immature field and it would
be surprising if there were not lessons to learn from the
experiences — and failures — of audit processes and practices
that have been honed over decades if not centuries [47].

Whenever a new technical area emerges it will be difficult
to find people with the appropriate skillset — a technical
knowledge of the area and competency in carrying out an
audit. As commercial organisations, audit firms may seek to
extend their audit competence into new technical areas, not
just cloud audit, but perhaps environmental audit as another
example. Over a century of experience in the development of
audit tools and practices then needs to be applied to a new
technical domain. Alternatively, computing specialists might
pick up an audit skillset. A logical outcome would be for
audit firms to recruit computer cloud experts and seek to
harmonise their skills with those of audit already embedded
in the firm. The culture clash between accountants and cloud
experts would be a potential side effect from such a strategy
[1].

One tool the accountants have used for decades is the audit
trail and this is a phrase already in the cloud computing lit-
erature by the National Institute of Standards and Technology
(NIST) [48] for example. However, the same phrase may not
carry the same meaning in both settings. Quoting from the
Oxford English Dictionary (OED) [49]: “(a) Accounting: a
means of verifying the detailed transactions underlying any
item in an accounting record; (b) Computing: a record of the
computing processes that have been applied to a particular
set of source data, showing each stage of processing and
allowing the original data to be reconstituted; a record of the
transactions to which a database or a file has been subjected”.
So, disparity of definition is recognized by the OED.

Accountants are members of professional bodies (some
national, some global) that limit membership to those who
have passed exams and achieved sufficient breadth and length
of experience that they are deemed worthy to represent the
profession. Audit is a key feature of these exam syllabi and
the tracing back to the source each accounting activity (the
trail) is a foundational aspect of audit.

Whilst NIST [48] gave a clear explanation of an audit
trail in a computing security setting and in keeping with
the OED definition (b), the use of the term in research in
cloud audit seems less precise and consistent. For example,
Bernstein [50] sees the trail including: events, logs, and the
analysis of these, whilst Chaula [51] gives a longer, more
detailed list: raw data, analysis notes, preliminary development
and analysis information, processes notes, and so on. Indeed,
Pearson and Benameuer [52] accept that the attaining of
consistent, meaningful audit trails in the cloud is a goal rather
than reality. More worryingly Ko et al. [46] point out that it
is quite possible for an audit trail to be deleted along with
a cloud instance, meaning no record then remains to trace
back, understand and hold users to account for their actions
and Ko [53] then details the requirements for accountability.
Indeed, the EU Article 29 Working Party [54] highlights poor

audit trail processes as one of the security issues inadequately
covered by existing principles.

Whilst the audit trail might seem a long and tedious list
of activities and interventions, it can be of enormous value in
chasing down the root of a cyber-attack, in much the same way
as an accountant might use it to trace the steps and individuals
involved in enabling an inappropriately authorised payment.
At root, the concept should be implemented in a way that
it ought even to enable the reconstruction of a system were
it to have been completely deleted, not just trace an errant
single transaction. The audit trail may be duplication, but it is
necessary given the risk of manipulation, compromise or loss.

Our discussions with IT professionals, who have asserted
their confident reliance on data backups, show a level of un-
merited trust as an inappropriate intervention will be repeated
in every backup until it is discovered. Backups of a corrupted
system will not achieve a rebuild to an uncorrupted one —
the audit trail gives this opportunity. Referring back to Ko
et al. [46] establishing an excellent audit trail is worthless
if it is only to be deleted along with a cloud instance.
The establishment of an adequate audit trail often needs to
be explicit as software frequently allows audit trails to be
switched off in its settings.

Once an audit trail has been established, it contents need to
be protected from any adjustment. As Anderson [55] points
out, even system administrators must not have the power to
modify it. Not only is this good practice even with well trained
and ethical individuals, but it is always possible that a hacker
might be able to attain administrator status. Therefore, the
audit trail needs the establishment of an immutable database
(i.e., one that only records new activities but never allows
adjustment of previous ones). This is the primary goal of this
first test for the successful development of a system to preserve
both the audit trail and system logs. In the next section, we
discuss the motivation for this work.

B. Motivation

Given how easily many enterprises unwittingly make life
much easier for attackers, we are motivated to do something
about it that should neither be expensive to implement, nor
technically challenging. It is obvious from analysis of past
successful attacks, that one of the key goals of the attacker is
to attack both the audit trail and the system logs, in order to
obfuscate, or delete all trace of their visit, and everything that
they have done whilst inside the compromised system.

The lack of proper monitoring by enterprises, and the ease
with which attackers can carry out this, important for them,
exercise also makes it much harder for the enterprise to
even know they have been breached, let alone understand
what exactly has been read, modified, deleted, or ex-filtrated
from their systems. Since this will form a cornerstone of the
forthcoming EU GDPR, this requirement must be addressed.

Why should this be of concern? The EU GDPR has some
serious teeth. Failure to report a breach within 72 hours will be
a contravention, as will failure to take proper steps to protect
data assets. There are serious penalties that can be enforced.

A single data breach can result in a fine of up to the greater of
€10 million or 2% of Global Turnover based on the previous
year’s accounts. Multiple breach elements can result in the
fine increasing to the greater of €20 million or 4% of Global
Turnover based on the previous year’s accounts.

That is sure to catch the attention of enterprises, particularly
in line with the current industry standard time between breach
and discovery. Given that the enforcement date of the EU
GDPR is 25th May 2018, and that enterprises have yet to
get the time between breach and discovery down to hours, let
alone days, this has to be concerning. Those enterprises who
are UK based, will also have no respite, as the UK have agreed
to implement the EU GDPR and continue with it after Brexit.
Indeed, they propose additional changes to give users greater
rights.

We strongly believe that enterprises must make provision
to ensure the maintenance of both a proper audit trail, and
the preservation of as much forensic evidence as possible.
Users who do not, are effectively aiding and abetting attackers.
For the reasons already discussed above, they must also take
particular note of the need to preserve both audit trail data and
systems log data when using the cloud. Thus we now take a
look at one of the weakest links in this chain, the database.

The cloud paradigm is essentially web based technology,
facilitated by a database back end. There are many well known
web based vulnerabilities, yet it is clear from analysis of
security breach reports, that many enterprises are continu-
ally failing to implement even the simplest of preventative
measures to mitigate these weaknesses. In addition, it is also
clear that many enterprises are failing to monitor their systems
properly to detect breaches, given the disparity in time between
breach and discovery. As far back as 2012, Verizon [56]
highlighted the fact that discovery of security breaches often
took weeks, months or even years before discovery, with most
discovery being advised by external bodies, such as customers,
financial institutions or fraud agencies. While improvements
have been made in the intervening years, the situation is far
from perfect.

It is also appropriate to consider the work done by the Open
Web Application Security Project (OWASP), who carry out a
survey around every 3 years in which they collate the number
of vulnerabilities which have the greatest impact on enterprises
globally. In TABLE I, we can see the top ten lists from 2017,
2013, 2010 and 2007:

Sitting at the top of the table for 2017, 2013, again for 2010,
and in second place in 2007, we have injection attacks. It is
very clear that enterprises are consistently failing to configure
their database management systems properly. Injection attacks
rely on mis-configured databases used in dynamic web service
applications, which allow SQL, OS, or LDAP injection to
occur when untrusted data is sent to an interpreter as part
of a command or query. The attacker’s hostile data can
trick the interpreter into executing unintended commands or
accessing data without proper authorization. This can lead to
compromise, or deletion of data held in enterprise databases.

TABLE I. OWASP Tor TEN WEB VULNERABILITIES — 2017 -
2007 [57]

2017 2013 2010 2007 Threat

Al Al Al A2 Injection Attacks

A2 A2 A3 A7 Broken Authentication and
Session Management
Cross Site Scripting (XSS)
Missing Function Level
Broken Access Control
Security Misconfiguration
Sensitive Data Exposure
Insufficient Attack
Protection

Cross Site Request
Forgery (CSRF)

A3 A3 A2 Al
A4 A7 - -

A5 A5 A6 -
A6 A6 - -
A7 - - -

A8 A8 AS A5

A9 A9 - - Using Components with
Known Vulnerabilities
A10 Al10 - - Unprotected APIs

But injection attacks are not the only attacks which involve
databases, numbers A3 and A8 in the 2017 column also are
directly related to either missing input validation or output
sanitation. Equally, databases might also be used in most
of the other top ten vulnerabilities, which means database
mis-configuration, failure to carry out proper input validation
or failure to configure systems which use database systems
properly account one way or another for most of the successful
attacks.

Attackers continue to use methods which continue to work,
which is clear to see from the continued success of the same
attacks, year after year. Indeed the top three attacks have been
around for over a decade. Thus, we consider this area to be of
vital importance for ensuring that any enterprise may achieve
a high level of security. And given the importance of the audit
trail and system log data, we believe the best approach would
be to use an immutable database to record this data properly,
which we shall discuss in the next section.

III. WHAT IS AN IMMUTABLE DATABASE?

We can describe an immutable database as a secure database
implementation capable of meeting the criteria for a proper
audit trail, namely, that it should only be capable of being
read by a restricted number of authorised users. It must not
permit the editing of any transactions, and must not allow any
transaction to be deleted. Only new records can be added, no
modifications are permitted, and no deletions may take place,
thus preserving the original input for subsequent examination.

There are many ways that we might approach developing
an immutable database beyond the MySQL route. We could
use new database technology such as NoSQL [58], [59]
and NewSQL [60], or we could take the blockchain/bitcoin
approach [61]-[63]. These approaches do show some promise,
but are out of scope for this current paper, which concentrates
on a pragmatic and simple approach. We do, however, include
them for consideration in our future work as outlined in
Section VIII.

Looking at the fundamental requirements of the audit trail
in Section II-A, it is clear that a conventional database struc-
ture fails to deliver on a number of these requirements. A
conventional database structure allows any records to be seen,

by anyone authorised, or an attacker able to gain adequate
credentials to do so. Worse, there is nothing to prevent modi-
fication, or deletion of these records. Thus a conventionally set
up database is totally unsuitable for an audit trail. The same
argument holds for system logs, which should have the same
characteristics as an audit trail.

Thus, an audit trail and system log database must have the
same characteristics as the manual system, namely restricted
access to view the audit trail, with NO option to add, modify
or delete records [3]. Naturally, in a cloud setting, as there
may be anything from a single instance up to many thousands
of instances running at any given time, it would be sensible
to host the logging systems on a completely different server
or servers at a location remote from the cloud instances, such
that all the instances will have their audit trail and system
logging data stored in the remote system. This can reduce the
probability that a successful attack on the cloud instance can be
leveraged to attack the logging database. Ideally, the logging
server or servers should be dedicated entirely to running a
secure immutable database, with preferably no direct means
of public access.

We accept that this means that the logging database is likely
to become a prime target for attack. Thus the logging database
should be protected with the highest level of security settings,
and should be subject to special monitoring to provide instant
warning of any attack.

We made the decision that there would be insufficient time
to consider writing bespoke software for our purposes. Thus
we would restrict ourselves in this work to evaluating what
we could do with an existing system. In [3], we observed that
short of writing new bespoke database software, or making
serious modifications to existing database software, we would
be left with three options we could use to meet our objective:

1) Remove all user access for all users to modifying or
deleting records and the database itself;

2) Remove the Modify Record and Delete Record command
from the software;

3) Use an Archive Database.

In the next section, we examine the pros and cons of each
option, in order to come up with the best practical solution to
this problem.

IV. CREATING AN IMMUTABLE DATABASE

Having decided that we would not consider writing some
bespoke software, but instead would see how we could con-
figure something utilising existing software, we then evaluated
the three options listed in Section III.

1) On the positive side, this option is the simplest to
configure, does not involve any software modification,
and will not impact on software updates. On the negative
side, should an attacker gain access to the database and
be able to escalate privileges, there would be nothing to
prevent them from reversing the restrictions;

2) On the positive side, this option would take away the
ability of an attacker, should they get in to the database

and be able to escalate privileges, to reverse the restric-
tions. On the negative side, this could complicate software
updates;

3) On the positive side, this presents an extremely simple
solution, no software needs modifying, and there is noth-
ing for the attacker to reverse. On the negative side, the
Archive Database does not support key searching. This
is likely to make searches cumbersome. However. in the
short term, we could resolve this issue by extracting a
copy of all the data into a conventional database with
full key search capabilities for rapid examination.

Thus, we took the view that for the purposes of this
work, we would use option 3, using the Archive Database
option, in order to create the system logging and audit trail
databases. We assume the application database will run using
conventional settings, although it is important to take account
of the following four weaknesses in conventional systems.

First, default logging options can result in insufficient data
being collected for the audit trail. Second, since there is
often a lack of recognition that the audit trail data can be
accessed by a malicious user gaining root privileges, we
recommend the audit trail and system logs should be sent
to the external immutable database, set up using the Archive
Database configuration, for this purpose. Third, failure to
ensure log data is properly collected and moved to permanent
storage can lead to loss of audit trail data, either when an
instance is shut down, or when it is compromised. Sending
all audit trail and system log data to the external immutable
database/s will ensure that the data will not be lost when the
instance is closed down. Fourth, the recommended mitigation
techniques suggested by OWASP should be implemented in
the main web application software.

Now, we consider the minimum audit trail data we would
wish to collect. MySQL offers the following audit trail options:

o Error log — Problems encountered starting, running, or

stopping mysqld;

o General query log — Established client connections and

statements received from clients;

o Binary log — Statements that change data (also used for

replication);

« Relay log — Data changes received from a replication

master server,

e Slow query log — Queries that took more than

long_query_time seconds to execute;

« DDL log (metadata log) — Metadata operations per-

formed by Data Definition Language (DDL) statements.

By default, no logs are enabled, except the error log on
Windows. Some versions of Linux send the Error log to syslog.
Thus for a straightforward implementation, we would wish to
collect the Error Log, the General query log, the Binary log
and the Slow query log. Where replication is in use, adding
the Relay log is recommended. Where DDL statements are
used, then the DDL log should also be activated.

While Oracle offer an audit plugin for Enterprise (paid)
editions of MySQL, which allows a range of events to be
logged, by default most are not enabled. The MariaDB com-

pany, whose author originally wrote MySQL, have their own
open source audit plug-in, and offer a version suitable for
MySQL. It has the following functionality:

o CONNECTION — Logs connects, disconnects and failed

connects (including the error code);

¢ QUERY — Queries issued and their results (in plain

text), including failed queries due to syntax or permission
errors;

« TABLE — Which tables were affected by query execu-

tion;
« QUERY_DDL — Works as the ‘QUERY’ value, but
filters only DDL-type queries (CREATE, ALTER, etc);

¢ QUERY_DML — Works as the ‘QUERY’ value, but
filters only Data Manipulation Language (DML) DML-
type queries (INSERT, UPDATE, etc.).

Where an enterprise falls under the provisions of the new
EU GDPR regulations, using the MariaDB audit trail plug-in
and turning on ALL 5 logging options would be a prudent
move. Admittedly this would require a considerable increase
in storage requirements for the log output. However, since they
would then be in a position to provide full disclosure to the
regulator of all records accessed, tampered with or deleted,
this would go a very long way to mitigate the amount of fine
they might be subject to, which could be as high as 4% of
their global turnover.

Thus, this approach will address the first problem, that of
insufficient audit trail and system logging data being collected.
If the data is sent to a well protected external database, an
attacker who has compromised the running instance will not be
able to cover their trail. The system logs could be retained on
the instance to make the attacker think that they have covered
their tracks. Thus, the second point is addressed. By sending
a copy of all log data to the secure immutable database, we
can address the third point, thus ensuring no data is lost on
shut down of the instance. Finally, if the OWASP mitigation
techniques are used to harden the web application, there will
be less likelihood of a successful breach taking place. Plus the
immutable database on the secure external server satisfies the
requirements of a proper audit trail [55].

There is also no doubt that adding an Intrusion Detection
system (IDS) is also a useful additional precaution to take,
and again, this should be run on an independent secure server
under the control of the cloud user.

Equally, where the MySQL instance forms part of a LAMP
server, then it would also be prudent to make some elementary
security changes to the setup of the Linux operating system,
the Apache web server, and to harden the PHP installation.

There is one additional task that would be very worthwhile.
That is to set up an additional control instance to monitor every
new instance added to the application, which regularly checks
whether the instance is still functioning as expected. This
would allow this system to warn of instances unexpectedly
being closed down, which might be a sign of an attack.
In addition, the log files in the immutable database could
be monitored for specific patterns, which might indicate the
possibility of an attack.

One of the biggest issues is the fact that there is such a
lag between breach and discovery, and this approach could
provide much earlier warning of such an event. However, of
greater interest, is the fact that a full forensic trail would be
instantly available for immediate investigation. And it would
be possible to disclose the extent of the breach well within the
required disclosure time of 72 hours from the time of breach
to disclosure.

As we see from [64], see Figure 1, that in 2015, 75% of
breaches happened within days, yet only 25% of discoveries
are actually made within the same time-frame. This still leaves
a large gap where compromised systems may still be under the
control of malicious users. Our proposed approach would go
some way to reducing this problem.

100%

75%

50%

5% Time to Discover

0%

2004 2006 2008 2010 2012 2014

Fig. 1. The Lag Between Breach and Discovery (©) 2015 Verizon

This presents a clear indication that very few firms are
actually scrutinising their server logs. We take a quick look
at some typical database attacks and possible mitigation for
these attacks in the next section.

V. TYPICAL DATABASE ATTACK METHODOLOGIES

SQL injection attacks are relatively straightforward to de-
fend against. OWASP provide an SQL injection prevention
cheat sheet [65], in which they suggest a number of defences:

o Use of Prepared Statements (Parameterized Queries);

e Use of Stored Procedures;

o Escaping all User Supplied Input;

They also suggest that enterprises should enforce least
privilege and perform white list input validation as useful
additional precautions to take.

For operating system injection flaws, they also have a
cheat sheet [66], which suggests that LDAP injection attacks
are common due to two factors, namely the lack of safer,
parameterized LDAP query interfaces, and the widespread use

of LDAP to authenticate users to systems. Their recommen-
dations for suitable defences are:

« Rule 1 Perform proper input validation;

e Rule 2 Use a safe API,

« Rule 3 Contextually escape user data.

And for LDAP system injection flaws, their cheat sheet [67]
recommends the following injection prevention rules:

o Defence Option 1: Escape all variables using the right
LDAP encoding function;

o Defence Option 2: Use Frameworks that Automatically
Protect from LDAP Injection.

These preventative measures suggested by OWASP are not
particularly difficult to implement, yet judging by the recurring
success of these simple attacks year after year after year,
enterprises are clearly failing to take even the simplest of
actions to protect themselves against them.

In addition to making the simple suggestions we propose
above, cloud users should also make sure they actually review
the audit trail logs. IF you do not review the logs, how will
you know whether you have been breached? It is vital to be
able to understand when a security breach has occurred, and
exactly which records have been accessed, compromised or
stolen. While we recognise that this is not a foolproof method
of achieving cloud security, it is likely to present a far higher
level of affordable, achievable security than many enterprises
currently achieve.

Implementing these suggestions will not guarantee security,
but will make life so much more difficult for the attacker that
they are more likely to move on to easier ‘low hanging fruit’
elsewhere. There is currently an abundance of other options
for them to choose from.

However, the enterprise must remain vigilant at all times.
It would be prudent to subscribe to security feeds, and follow
leaders in the field to ensure they remain aware of all the latest
security vulnerabilities and exploits. Of course, enterprises
must realise that the threat environment is not restricted to
outside parties alone. A greater concern is the threat posed
by malicious internal actors, which can be even more serious
where they act in concert with outside parties. This presents
one of the most serious weaknesses to the security of an
enterprise. Equally, laziness on the part of staff or lack of
knowledge, particularly where they have not been regularly
trained to provide them with full awareness of all the latest
threats, including social engineering attacks, and the conse-
quence of falling victim to them, can also pose an extremely
serious risk to enterprise security.

In the event of a security breach, not if, but rather when it
happens, it may be necessary to conduct a forensic examina-
tion to establish how the enterprise defences were breached.
With traditional distributed systems, there is usually something
for the forensic computer scientists to find, somewhere in the
system. They are completely accustomed to dealing with being
able to find only partial traces of events, from which they
can build a forensic picture of the breach. This becomes more
problematic the longer the time between breach and discovery.

However, once an enterprise adopts cloud use, this becomes
far more problematic. While forensic computer scientists can
work wonders with a range of partial discoveries, deleted
or otherwise, once a cloud instance is shut down, there is
virtually zero chance of regaining access to the shut down
system. The disk space used by that system could be re-used,
literally within seconds, and where the time interval between
breach and discovery is considerably longer, as is generally the
norm, then this opportunity becomes a physical impossibility.
Thus, for forensic purposes, enterprises need to pay far more
attention to what is actually going on in the cloud.

The suggestions we make can go a long way to providing
a greater level of security, and perhaps more importantly, can
ensure there is actually a forensic trail to follow in the event
of a breach.

VI. CREATING AND CONFIGURING SECURELY AN
IMMUTABLE DATABASE SYSTEM

From Section IV, we can see how to create an immutable
database. We do not want to install this in the same cloud
system we are trying to protect, as this would leave the
immutable database open to direct attack by the successful
intruder. Rather, we would wish to place this into a dedicated
server, preferably installed in a secure system under the control
of the enterprise. However, in some circumstances, it may be
necessary to run the immutable database in a cloud system, and
in this case, we strenuously recommend that a different CSP is
chosen. Our preference is, of course, for an in-house dedicated
secure server, so we shall start by outlining the requirements
for that system first. Later in this section, we will consider
what special measures might need to be taken for setting up
this system in a cloud environment, and we finish off with a
comparison between the two options.

A. The In-House Secure Server

This server should be placed behind the enterprise firewall
and an Intrusion Detection System (IDS). There should be no
direct external web access to this system. There should be no
external login to a shell allowed to this system. It is necessary
to remove as many toys as possible from the attacker to limit
the scope for attack. Clearly, once the attacker discovers the
presence of this system, it is likely to become a prime target
for attack. Thus we must remove as many routes in as we
possibly can to this system. Direct web access is an attacker’s
dream. Removing this option makes life far more difficult for
the attacker, and that is precisely what we want to achieve.

This server should have no wireless components attached,
especially for connection to the network, as wireless can be
readily subject to attack. For a paranoid approach, the server
can be placed inside a locked room, with keyboard, video
screen and mouse removed from the server and stored in a
locked cabinet installed for the purpose, meaning it will then
be physically impossible to interact with the server. The key
should not then be available to the system administrator for
this server. Only collected data from the cloud source will be
allowed in through the hard wired internet connection. The

bandwidth and speed of this connection will have to be more
than adequate to service the projected needs of the required
data flow. Also, the server will require to have sufficient
performance and permanent storage for the collected data that
will require to be stored over time.

When installing the operating system for this server, the op-
erating system software must be analysed and ALL unneeded
software should be removed. Similarly, only the immutable
database software should be installed, with no other software
installed on this system. All open ports must be closed, both
on the server and on the network configuration. The immutable
database server systems administrator should not be granted
any privileges on the immutable database. The administrator
for the immutable database should not be granted root ac-
cess for the immutable database either. Once the immutable
database has been set up by a user who is granted root privilege
through a dongle to be inserted solely for that purpose, the
dongle and the access credentials should also be securely
locked away in the secure cabinet. Access to the cabinet should
be through two members of senior management, with their
keys securely stored elsewhere. In Unix based systems, Cron is
a time-based job scheduler in an operating system, designed to
carry out specific tasks at specific times. The Cron can handle
a multiplicity of commands (or shell scripts) over time, thus
ensuring the right tasks are carried out at the right time. Thus
maintenance routines can be set as Cron jobs to run tasks
which can be performed by the server itself at fixed times,
dates, or intervals.

Server software updates can either be set to operate auto-
matically, or can be done under controlled conditions by the
system administrator. Similarly, database updates can either be
set to operate automatically, or can be done under controlled
conditions by the database administrator.

For a super paranoid approach, this system can be replicated
elsewhere, and the data mirrored as it is streamed, whereby it
is operated under the same conditions with no physical access
for anyone involved in the system that is being protected.

For extreme levels of paranoia, Write Once Read Many
(WORM) times hard drives might be used. This is already well
established technology for CD disks, DVD disks and RDX
disks. These are usually considered too slow for enterprise use.
While conventional hard disks are available to use in a WORM
high security Network Attached Storage (NAS) configuration,
they are still expensive and not super fast yet.

We earlier mentioned that this immutable database server
could be configured to operate in the cloud, and in the next
sub-section we note how this can be achieved, bearing in mind
that so doing will introduce additional vulnerabilities.

B. The Cloud Based Immutable Database Server

The first point to stress with a cloud based immutable
database server, is that it will be considerably less secure than
the in-house version. This is due to the inherently less secure
nature of cloud technology, which is why we are attempting
to resolve this problem in the first place. On the plus side, it
will be considerably more pragmatic in use, since it will be

impossible to lock up the server and remove keyboard, video
screen and mouse.

Taking all of that into account, on the plus side, the instance
will be capable of scaling easily to meet demand. On the
negative side, it will be much easier to attack. However, since
it will not have direct web access, this will present a much
greater challenge to the attacker. Also, it will not be set up
with the same CSP as the main system, which means unless the
intruder gets far enough into the main system, it will take some
figuring out. But it would not be impossible, and therefore the
immutable database will become a very promising target.

Everything that can be done in Sub-Section VI-A, with the
exception of the physical tasks can be carried out in this case.
Careful setup of who is allowed to access this system can help
control who can gain access to the system, and with no direct
external web access to this system and only tightly restricted
login to a shell available, this will make the attacker’s job
much more difficult. But, you must always remember it is
running on a cloud system, and is therefore subject to the
same pitfalls as the main system you are trying to protect.

This means that in addition to IDS systems, you will also
require to have a seriously good monitoring system in place.
It will be vital to understand who is in your system and what
they are trying to do. In fact, let us re-phrase that. Other than
receiving the data you expect — anyone inside your system is
an intruder, so you need to have instant warning, bells ringing,
lights flashing, klaxons blaring — whatever it takes, in order
that the intruder can instantly be dealt with.

C. A Comparison Between the Two Options

Before attempting to make a decision between the two
options, we must first consider the pros and cons of each
system.

For the in-house immutable database system option:

Pros:

o In-house will be more secure than cloud-based;

« In-house offers the advantage of extra physical security;

o In-house will be fully under the control of the enterprise;

« In-house will gain protection from enterprise firewall and

IDS;

o In-house system will benefit from not requiring external

web access;

o In-house system will benefit from no wireless access.

Cons:

o Lead time for implementation and expansion increases

can be a factor;

« Insufficient internet bandwidth could adversely impact on

performance;

¢ In-house costs may be greater than for cloud-based sys-

tems;

o In-house system will become a highly attractive target.

For the cloud-based option:

Pros:

o Cloud-based systems are simple to implement and can be

rapidly deployed;

o Cloud-based systems respond well to changes in demand;

o Cloud-based systems cope well with increased volumes
of data storage.
Cons:
o Cloud-based systems will be less secure than in-house;
o Cloud-based systems will become a highly attractive
target;
e Cloud-based systems will be easier to attack than in-
house systems;
o Cloud-based systems will need to ensure that all data
from closed down instances are permanently stored.
Thus it is clear that compromises will have to be made
depending on which route is chosen to store the data collected
into the immutable database. However, being able to under-
stand the pros and cons of each option provides a good basis
on which to evaluate the impact of either on the enterprise,
thus leading to the right decision for the enterprise.
Regardless of which system is chosen, either will require
the installation of a good monitoring system. In the next sub-
section, we consider the requirements for a suitable monitoring
system.

D. Monitoring the Immutable Database Server

The data contained in the main system is very valuable to an
enterprise. The data collected and contained in the immutable
database is also extremely valuable to both the enterprise and
to law enforcement. Under conventional attack scenarios, the
audit trail and forensic trail are usually modified or deleted by
the intruder, in order to cover their trail. Without proper audit
trail or forensic data, it becomes very difficult to understand
what records have been accessed, modified or deleted. When
this concerns data covered by the EU GDPR, this brings a
serious problem to bear on the enterprise — the potential
impact of fines. Thus the audit trail and forensic trail data
captured in this remote server becomes an especially useful
resource for the enterprise.

With conventional successful cloud systems attacks , the
forensic trail is usually obliterated, or partially destroyed by
the intruder, and this will be the approach for the successful
attack on the main system. Very few intruders will be skilled
enough to understand that there is a secret cache of forensic
data. However, if an intruder is skilled enough to realise that
this is the case, then they most certainly will come after the
audit and forensic data, and will attempt to discover where it
is and attack that system. The setup of this system means this
will present a much greater challenge, which will defeat all
but the most skilled intruder. This is why it is vital to have a
successful monitoring system in place.

It would be sensible to use a software agent to monitor,
and log, all system calls made inside the immutable database
server system. Any system call made other than the writing
of data to the immutable database is likely to arise from
the unexpected actions of an intruder. So by monitoring and
looking for system calls that do not match the expected pattern,
then this provides evidence of a possible intruder in the system.

Naturally, it also makes sound sense to monitor the in-
coming data from the main system being protected by the

immutable database. It would make sense to create another
software agent, or agents, do handle these tasks also. The
agents could be used to scan the incoming data to search
for know patterns suggestive of the presence of an intruder.
This can provide a second line of defence in the event that
such agents in the main system had been knocked out by the
intruders.

Monitoring of these systems is vital in order to be able to
realise the moment an intruder breaches the system, particu-
larly in the light of the stringent reporting requirements of the
forthcoming EU GDPR.

VII. DISCUSSION ON SECURITY ISSUES

In our quest to secure cloud based systems in the light of
the forthcoming EU GDPR, we need to face facts. Achieving
any kind of security in IT systems at this time is akin to trying
to perform all one’s daily tasks with one’s hands tied behind
one’s back. The combination of the requirement for legacy
compatibility, poor inherent security of software due to bug
riddled software and insufficient testing, both the operating
systems and for the ever more complex software running on
these systems, coupled with insufficient understanding of how
to configure all these products securely, means that there is
little prospect of a successful outcome.

Also, many standards for various software implementations
were developed decades ago, long before the internet opened
up every user to exploitation due to non-existent or limited
security. Decades of limited software testing are opening
up ever more vulnerabilities for attackers to exploit. The
insistence on backward compatibility of software products is
a case in point. Adding a more complex system on top of an
already vulnerable system is simply a recipe for disaster.

What is needed is a recognition that we are collectively
going about this the wrong way. In software development,
the reuse of software is a laudable software engineering goal.
But the reuse of inherently insecure software systems simply
perpetuates the problem. This is why we have weaknesses in
operating systems, database systems, web systems, network
systems, email systems, indeed pretty much all our current
software systems.

A new approach is required, whereby all software systems
are re-written from the ground up — to be secure. A good
start would be to enforce the writing of proper secure soft-
ware systems, APIs, DLLs and drivers for all new hardware
being produced. A revision of email and network protocols
would provide a useful improvement to reduce delivery of
attack vectors for attackers. Operating systems and all other
software in general should be re-written in a much more secure
way. Default configuration should be “super secure”, so that
every software installation will be guaranteed secure. Detailed
security configuration instructions should be provided with all
software, to minimise the effect of mis-configuration opening
up unexpected vulnerabilities.

It is comforting to note that many operating system de-
velopers have started initiatives to develop secure operating
systems. Over recent years, it is clear that a lot of work has

gone into this effort, but it is equally clear that it may be some
time before we see a fully secure operating system available
for use. Equally, many software development businesses have
also started similar initiatives, which is also very welcome.
Again, it may be some time before we see the full fruits of
these initiatives. Solving the major cloud issue of how easily
cloud audit and forensic data can be deleted remains a serious
concern.

Initiatives, such as the Bright Internet [68], are also very
welcome as a means of providing greater accountability by all
internet service companies and users. The status quo can not
continue. Last year, the global cost of cybercrime is estimated
to have exceeded global income from illicit drugs for the
first time. As long as the status quo remains, the impact
of cybercrime will continue to climb. Add to that the cost
of potential fines arising from penalties arising from cyber
breaches around the globe, and it is clear that something
positive needs to happen.

VIII. CONCLUSION AND FUTURE WORK

We have considered a wide range of security issues in
cloud based systems, with a view to highlighting that the
attack surface of any cloud based system extends well beyond
technical issues. We have identified that databases present a
considerable weakness in cloud based systems, in addition to
the unintended potential loss of forensic data caused by the
manner in which scalability is handled in large cloud systems.

It is common for experts to recommend simple house-
keeping solutions when security vendors want to sell new
technology. This proposed solution is more of the former,
though development of audit trail interrogation tools would
help meet the tight deadlines for discovery and rectification
in the GDPR. A solution based on an immutable database of
an audit trail may seem a very boring and low-tech solution,
but since high level technological solutions have yet to be
able to resolve this very important weakness, it represents a
pragmatic short term approach to addressing a serious problem
with cloud. As if that were not enough to get some attention,
4% of turnover fines ought to focus minds, even if protecting
customer and employee data doesn’t.

We have suggested a simple approach that could be easily
implemented, with minimal technical knowledge, which would
offer a considerable improvement on cloud security, with the
additional benefit of maintaining a vastly improved forensic
trail to explore in the event of a breach. Until such time as this
major cloud weakness can be properly resolved, this proposal
offers an interim mitigating solution.

Equally, our proposal also offers the benefit of being able
to discover precisely which records have been viewed, com-
promised, or deleted. This presents a means of ensuring com-
pliance with the GDPR, which is likely to offer a significant
mitigation in the event that any regulator proposes a significant
fine, since the enterprise will be in a position to comply fully
with the reporting requirements.

We plan to test this proposal to identify any loss in perfor-
mance resulting from not being able to use key searching in

the immutable database, and to identify how it will stand up
to attack. In the longer term, it would be useful to develop a
software solution that might add the key search capability to
the immutable database.

However, as a follow through to the limited work contained
in this paper, we will extend our view to include NoSQL,
NewSQL and blockchain technology. We will also consider
several methodologies for security the immutable database so
that it might be run securely on cloud, including the use of a
Unikernel solution based on UnikernelOS software. This might
provide an interesting synergy for security due to both the
ultra small profile that UnikernelOS offers together with the
immutability of running instances.

REFERENCES

[1] B. Duncan and M. Whittington, “Creating an Immutable Database for
Secure Cloud Audit Trail and System Logging,” in Cloud Comput. 2017
Eighth Int. Conf. Cloud Comput. GRIDs, Virtualization. Athens: IARIA,
ISBN: 978-1-61208-529-6, 2017, pp. 54-59.

[2] B. Duncan and M. Whittington, “Enhancing Cloud Security and Privacy:
The Cloud Audit Problem,” in Cloud Computing 2016: The Seventh In-
ternational Conference on Cloud Computing, GRIDs, and Virtualization,
April 2016, pp. 119-124.

[3] B. Duncan and M. Whittington, “Enhancing Cloud Security and Privacy:
The Power and the Weakness of the Audit Trail,” in Cloud Comput-
ing 2016: The Seventh International Conference on Cloud Computing,
GRIDs, and Virtualization, April 2016, pp. 125-130.

[4] B. Duncan and M. Whittington, “Cloud cyber-security: Empowering the
audit trail,” Int. J. Adv. Secur., vol. 9, no. 3 & 4, pp. 169-183, 2016.

[5] Trustwave, “2012 Global Security Report,” Tech. Rep., 2012.

[6] EU, “EU General Data Protection Regulation (GDPR),” 2017. [Online].
Available: http://www.eugdpr.org/ Last accessed: 28 August 2017.

[71 G. Moore, “Cramming More Components Onto Integrated Circuits,”
Electronics, vol. 38, no. April 19, pp. 114-117, 1965.

[8] N. Papanikolaou, S. Pearson, M. C. Mont, and R. K. L. Ko, “Towards
Greater Accountability in Cloud Computing through Natural-Language
Analysis and Automated Policy Enforcement,” Engineering, pp. 1-4,
2011.

[9] A. Baldwin, D. Pym, and S. Shiu, “Enterprise Information Risk
Management: Dealing with Cloud Computing,” Abdn.Ac.Uk, pp.
257-291, 2013. [Online]. Available: http://link.springer.com/10.1007/
978-1-4471-4189-1{_}8 Last accessed: 30 November 2017.

[10] B. Duncan and M. Whittington, “Enhancing Cloud Security and Privacy:
Broadening the Service Level Agreement,” in /4th IEEE Int. Conf. Trust.
Secur. Priv. Comput. Commun. (IEEE Trust., Helsinki, Finland, 2015, pp.
1088-1093.

[11] M. Huse, “Accountability and Creating Accountability: a Framework
for Exploring Behavioural Perspectives of Corporate Governance,” Br. J.
Manag., vol. 16, no. S1, pp. S65-S79, mar 2005.

[12] S. Pearson, “Toward accountability in the cloud,” IEEE Internet Com-
put., vol. 15, no. 4, pp. 64-69, jul 2011.

[13] D. Catteddu, M. Felici, G. Hogben, A. Holcroft, E. Kosta, R. Leened,
C. Millard, M. Niezen, D. Nunez, N. Papanikolaou, S. Pearson,
D. Pradelles, C. Reed, C. Rong, J.-C. Royer, D. Stefanatou, and T. W.
Wlodarczyk, “Towards a Model of Accountability for Cloud Computing
Services,” in Int. Work. Trust. Account. Forensics Cloud, 2013, pp. 21-30.

[14] W. Benghabrit, H. Grall, J.-C. Royer, M. Sellami, M. Azraoui,
K. Elkhiyaoui, M. Onen, A. S. D. Olivera, and K. Bernsmed, “A Cloud
Accountability Policy Representation Framework,” in CLOSER-4th Int.
Conf. Cloud Comput. Serv. Sci., 2014, pp. 489-498.

[15] A. Gill, “Corporate Governance as Social Responsibility: A Research
Agenda,” Berkeley J. Int’l L., vol. 26, no. 2, pp. 452-478, 2008.

[16] M. Low, H. Davey, and K. Hooper, “Accounting scandals, ethical
dilemmas and educational challenges,” Crit. Perspect. Account., vol. 19,
no. 2, pp. 222-254, Feb 2008.

[17] S. Arjoon, “Corporate Governance: An Ethical Perspective,” J. Bus.
Ethics, vol. 61, no. 4, pp. 343-352, nov 2012.

[18] C. Ioannidis, D. Pym, and J. Williams, “Sustainability in Information
Stewardship: Time Preferences, Externalities and Social Co-Ordination,”
in Weis 2013, 2013, pp. 1-24.

[19] A. Kolk, “Sustainability, accountability and corporate governance:
Exploring multinationals’ reporting practices.” Bus. Strateg. Environ.,
vol. 17, no. 1, pp. 1-15, 2008.

[20] K. Gilman and J. Schulschenk, “Sustainability Accounting Standards
Board,” pp. 14-17, 2012. [Online]. Available: www.sasb.org Last ac-
cessed: 30 November 2017.

[21] R.G. Eccles, K. Perkins, and G. Serafeim, “How to become a sustainable
company,” MIT Sloan Manag. Rev., vol. 53, pp. 43-50, 2012.

[22] R. G. Eccles, I. Toannou, and G. Serafeim, “The impact of corporate
sustainability on organizational processes and performance,” Manage.
Sci., vol. 60, no. 11, pp. 2835-2857, 2014.

[23] F. S. Chapin, G. P. Kofinas, and C. Folke, Principles of ecosystem stew-
ardship: Resilience-based natural resource management in a changing
world. New York: Springer, 2009.

[24] G. Hamel and L. Vilikangas, “The quest for resilience,” Harv. Bus. Rev.,
vol. 81, no. 9, pp. 52-63, 131, sep 2003.

[25] G. Sundstrom and E. Hollnagel, “Learning How to Create Resilience in
Business Systems,” Resil. Eng. Concepts Precepts., pp. 1-20, 2006.
[26] J. Birchall and L. H. Ketilson, Resilience of the Cooperative Business
Model in Times of Crisis Sustainable Enterprise Programme. International

Labour Organization, 2009.

[27] G. C. Avery and H. Bergsteiner, “Sustainable leadership practices
for enhancing business resilience and performance,” Strateg. Leadersh.,
vol. 39, no. 3, pp. 5-15, 2011.

[28] T. Prior and J. Hagmann, “Measuring resilience: methodological and
political challenges of a trend security concept,” J. Risk Res., no. January
2015, pp. 3741, 2013.

[29] V. Chang, M. Ramachandran, Y. Yao, Y. H. Kuo, and C. S. Li, “A
resiliency framework for an enterprise cloud,” Int. J. Inf. Manage., vol. 36,
no. 1, pp. 155-166, 2016.

[30] L. G. Price, “The Concept of Fiduciary Duty As a Basis for Corporate
Ethics,” J. Business, Soc. Gov., vol. 3, pp. 21-30, 2011.

[31] B. Withers and M. Ebrahimpour, “The Effects of Codes of Ethics on
the Supply Chain: A Comparison of LEs and SMEs,” J. Bus. Econ. Stud.,
vol. 19, no. 1, pp. 24-40,118-119, 2013.

[32] G. R. Weaver, “Encouraging Ethics in Organizations: A Review of Some
Key Research Findings,” Am. Crim. Law Rev., vol. 51, no. 107, pp. 293—
316, 2014.

[33] T. Hahn, F. Figge, J. Pinkse, and L. Preuss, “Editorial Trade-Offs in
Corporate Sustainability: You Can’t Have Your Cake and Eat It,” Bus.
Strateg. Environ., vol. 19, pp. 217-229, 2010.

[34] A. Lindgreen and V. Swaen, “Corporate social responsibility,” Int. J.
Manag. Rev., vol. 12, pp. 1-7, 2010.

[35] D. J. Wood, “Measuring corporate social performance: A review,” Int.
J. Manag. Rev., vol. 12, pp. 50-84, 2010.

[36] T. Green and J. Peloza, “How does corporate social responsibility create
value for consumers?” J. Consum. Mark., vol. 28, pp. 48-56, 2011.
[37] A. Christofi, P. Christofi, and S. Sisaye, “Corporate sustainability:
historical development and reporting practices,” Manag. Res. Rev., vol. 35,

no. 2, pp. 157-172, 2012.

[38] N. Rahman and C. Post, “Measurement Issues in Environmental Corpo-
rate Social Responsibility (ECSR): Toward a Transparent, Reliable, and
Construct Valid Instrument,” J. Bus. Ethics, vol. 105, pp. 307-319, 2012.

[39] M. A. Delmas, D. Etzion, and N. Nairn-Birch, “Triangulating Environ-
mental Performance: What Do Corporate Social Responsibility Ratings
Really Capture?” Acad. Manag. Perspect., vol. 27, no. 3, pp. 255-267,
2013.

[40] I. Montiel and J. Delgado-Ceballos, “Defining and Measuring Corporate
Sustainability: Are We There Yet?” Organ. Environ., pp. 1-27, 2014.
[41] B. Duncan, D. J. Pym, and M. Whittington, “Developing a Conceptual
Framework for Cloud Security Assurance,” in Cloud Comput. Technol.
Sci. (CloudCom), 2013 IEEE 5th Int. Conf. (Volume 2). Bristol: IEEE,

2013, pp. 120-125.

[42] B. Duncan and M. Whittington, “Company Management Approaches
Stewardship or Agency: Which Promotes Better Security in Cloud
Ecosystems?” in Cloud Comput. 2015. Nice: IEEE, 2015, pp. 154-159.

[43] T. Keyun, R., Carthy, J., & Kechadi, “Cloud Forensics An Overview,”
in 7th IFIP Conf. Digit. Forensics, no. January, 2011, pp. 35-46.

[44] NIST, “NIST Cloud Computing Forensic Science Challenges,” p. 51,
2014.

[45] S. Almulla, Y. Iraqi, and A. Jones, “A State-Of-The-Art Review Of
Cloud,” J. Digit. Forensics, Secur. Law, vol. VON4, pp. 7-28, 2014.
[46] R. K. L. Ko, P. Jagadpramana, M. Mowbray, S. Pearson, M. Kirchberg,
B. S. Lee, and Q. Liang, “TrustCloud: A Framework for Accountability

and Trust in Cloud Computing,” Perspective, pp. 1-9, 2011.

[47] B. Duncan and M. Whittington, “Compliance with Standards, Assurance
and Audit: Does this Equal Security?” in Proc. 7th Int. Conf. Secur. Inf.
Networks. Glasgow: ACM, 2014, pp. 77-84.

[48] B. Guttman and E. A. Roback, “NIST Special Publication 800-12. An
Introduction to Computer Security: The NIST Handbook,” NIST, Tech.
Rep. 800, 2011. [Online]. Available: csrc.nist.gov/publications/nistpubs/
800- 12/handbook.pdf Last accessed: 30 November 2017.

[49] OED, “Oxford English Dictionary,” 2016. [Online]. Available: www.
oed.com Last accessed: 30 November 2017.

[50] D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond, and M. Morrow,
“Blueprint for the Intercloud Protocols and Formats for Cloud Computing
Interoperability,” in Internet Web Appl. Serv. 2009. ICIW’09. Fourth Int.

Conf., 2009, pp. 328—-336.

[511 J. A. Chaula, “A Socio-Technical Analysis of Information
Systems Security Assurance: A Case Study for Effective
Assurance,” Ph.D. dissertation, 2006. [Online]. Available:

http://scholar.google.com/scholar?hl=en{\ & }btnG=Search{\ & }
g=intitle: A+Socio-Technical+Analysis+of+Information+Systems+
Security+Assurance+A+Case+Study+for+Effective+Assurance{ \#} 1
Last accessed: 30 November 2017.

[52] S. Pearson and A. Benameur, “Privacy, Security and Trust Issues Arising
from Cloud Computing,” 2010 IEEE Second Int. Conf. Cloud Comput.
Technol. Sci., pp. 693-702, nov 2010.

[53] R. K. L. Ko, “Data Accountability in Cloud Systems,” in Secur. Priv.
Trust Cloud Syst. Springer, 2014, pp. 211-238.

[54] EU, “Unleashing the Potential of Cloud Computing in Europe,” 2012.
[Online]. Available: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?
uri=SWD:2012:0271:FIN:EN:PDF Last accessed: 30 November 2017.

[55] R.J. Anderson, Security Engineering: A Guide to Building Dependable
Distributed Systems, C. A. Long, Ed. Wiley, 2008, vol. 50, no. 5.

[56] Verizon, “2012 Data Breach Investigation Report: A study conducted
by the Verizon RISK Team in cooperation with the United
States Secret Service and Others,” Tech. Rep., 2012. [Online].

Available: http://www.verizonenterprise.com/resources/reports/rp{_}
data-breach-investigations-report-2012{\ _}en{_}xg.pdf Last accessed:
30 November 2017.

[57] OWASP, “OWASP home page,” 2017. [Online]. Available: https://www.
owasp.org/index.php/Main{_}Page Last accessed: 30 November 2017.

[58] C. J. M. Tauro, S. Aravindh, and A. B. Shreeharsha, “Comparative
study of the new generation, agile, scalable, high performance NOSQL
databases,” Int. J. Comput. Appl., vol. 48, no. 20, pp. 14, 2012.

[59] D. G. Chandra, “BASE analysis of NoSQL database,” Futur. Gener.
Comput. Syst., vol. 52, pp. 1321, 2015.

[60] Y. N. Silva, I. Almeida, and M. Queiroz, “SQL: From traditional
databases to big data,” in Proceedings of the 47th ACM Technical
Symposium on Computing Science Education, 2016, pp. 413418.

[61] D. Wilson and G. Ateniese, “From pretty good to great: Enhancing pgp
using bitcoin and the blockchain,” in International Conference on Network
and System Security, 2015, pp. 368375.

[62] V. L. Lemieux, “Trusting records: is Blockchain technology the an-
swer?,” Rec. Manag. J., vol. 26, no. 2, 2016.

[63] E. Gaetani, L. Aniello, R. Baldoni, F. Lombardi, A. Margheri, and V.
Sassone, “Blockchain-based database to ensure data integrity in cloud
computing environments,” in CEUR Workshop Proceedings, 2017, vol.
1816.

[64] Verizon, “Verizon 2015 Data Breach Investigation Report,” Tech. Rep.,
2015.

[65] OWASP, “OWASP IoT Security Guidance,” 2016. [Online]. Available:
https://www.owasp.org/index.php/IoT{_} Security{_}Guidance ~ Last
accessed: 30 November 2017.

[66] OWASP, “OWASP Injection Prevention Cheat Sheet,” 2016. [Online].
Available: https://www.owasp.org/index.php/Injection{_}Prevention{_
}Cheat{_}Sheet Last accessed: 30 November 2017.

[67] OWASP, “OWASP LDAP Injection Prevention Cheat Sheet,” 2016.
[Online]. Available: https://www.owasp.org/index.php/LDAP{\ _}
Injection{_}Prevention{_}Cheat{_}Sheet ~Last accessed: 30
November 2017.

[68] AIS, “Bright Internet Initiative,” 2017. [Online]. Available: http://aisnet.
org/?page=BrightICT Last accessed: 30 November 2017.

