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Abstract

Achieving cloud security is not a trivial problem to address. Developing and enforcing 
good cloud security controls are fundamental requirements if this is to succeed. The 
very nature of cloud computing can add additional problem layers for cloud security to 
an already complex problem area. We discuss why this is such an issue, consider what 
desirable characteristics should be aimed for and propose a novel means of effectively 
and efficiently achieving these goals through the use of well-designed unikernel-based 
systems. We have identified a range of issues, which need to be dealt with properly to 
ensure a robust level of security and privacy can be achieved. We have addressed these 
issues in both the context of conventional cloud-based systems, as well as in regard to 
addressing some of the many weaknesses inherent in the Internet of things. We discuss 
how our proposed approach may help better address these key security issues which we 
have identified.

Keywords: cloud security and privacy, unikernels, Internet of things

1. Introduction

There are a great many routes into an information system for the attacker, and while many 
of these routes are well recognized by users, many others do not see the problem, mean-
ing limited work is being carried out on defense, resulting in a far weaker system. This 
becomes much more difficult to solve in the cloud, due to the multi-tenancy nature of cloud 
computing, where users are less aware of the multiplicity of companies and people who can 
access their systems and data. Cloud brings a far higher level of complexity than is the case 
with traditional distributed systems, in terms of both the additional complexity of managing 
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new relationships in cloud, and in the additional technical complexities involved in run-
ning systems within the cloud. It runs on other people’s systems, and instances can be freely 
spooled up and down, as needed.

Add to this the conception, or rather the misconception, that users can take the software, 
which runs on their conventional distributed systems network and run it successfully on the 
cloud without modification, thus missing the point that their solid company firewall does not 
extend to the cloud, and that they thus lose control over who can access their systems and 
data. Often, users also miss the point that their system is running on someone’s hardware, 
over which they have limited or no control. While cloud service providers may promise high 
levels of security, privacy and vetting of staff, the same rigorous standards often do not apply 
to their subcontractors.

There are many barriers that must be overcome before cloud security can be achieved [1]. 
A great deal of research has been conducted toward resolving this problem, mostly through 
technical means alone, but this presents a fundamental flaw. The business architecture of 
an enterprise comprises people, process and technology [2], and any solution, which will 
focus on a technological solution alone, will be doomed to failure. People present a serious 
weakness to enterprise security [3], and while process may be very well documented within 
an organization, often it is out of date due to the rapid pace of evolution of technology [4]. 
Technology can benefit enterprises due to the ever improving nature and sophistication of 
software, which is a good thing, but at the same time can present a greater level of complexity, 
making proper and secure implementation within enterprise systems much more difficult. 
Another major concern is that the threat environment is also developing at a considerable 
pace [5].

Cloud computing has been around for the best part of a decade, yet we still have to see 
an effective, comprehensive security standard in existence. Those that do exist tend to be 
focussed on a particular area, rather than the problem as a whole, and as stated above, they 
are often out of date [4]. Legislators and regulators are not much further advanced. The 
usual practice is to state what they are seeking to achieve with the legislation or regulatory 
rules. Usually, they are very light on the detail of how to achieve these goals. To some extent, 
this is deliberate—if they specify the principles to apply to achieve their desired objective 
rather than the exact details, they do not have to keep updating the legislation/regulations 
as circumstances change. Often, they have no clue as to how to achieve these goals anyway, 
leaving it up to the users to work it out. This is the approach favored by the UK authori-
ties, and it can be argued that it generally works well. In the US, they favor the rules-based 
approach, which, of necessity, requires far more work on the part of the government and 
regulators to keep the rules up to date. It also spawns an active industry of specialists who 
constantly probe the boundaries to see how far they can be pushed. Global enterprises often 
have to deal with both types of approach. In addition, the methodology deployed to achieve 
compliance is often flawed [6]. To this complex environment, we must now, of necessity, 
add the impact of both Industry 4.0, which encompasses mostly high-value targets, e.g. 
factories, and the Internet of things (IoT), which is likely to see a massive global explosion, 
to the mix.
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The IoT has been around now for a considerable time, but it did not get much traction until 
the arrival of cloud computing and big data. In 2007, Gantz et al. [7] suggested that global data 
collection would double every 18 months, a prediction that looks like being very light when 
compared to the reality of data creation coming from the expansion of the IoT. Cisco noted 
that the IoT had really come of age in 2008, when there were now more things connected 
to the Internet than people [8]. The massive impact arising from this enabling of the IoT by 
cloud computing brings some exciting new applications and future possibilities in the areas of 
defense, domestic and home automation, eHealth, industrial control, logistics, retail, security 
and emergencies, smart airports, smart agriculture, smart animal farming, smart cars, smart 
cities, smart environment, smart metering, smart parking, smart roads, smart trains, smart 
transport and smart water, but also brings some serious challenges surrounding issues of 
security and privacy. Due to the proliferation of emerging and cheaply made technology for 
use in the IoT, it is well known that the technology is particularly vulnerable to attack. When 
we combine the IoT and big data, we compound this problem further. This area is poorly 
regulated, with few proper standards yet in place, which would suggest it might be more 
vulnerable than existing cloud systems, which have been around for some time now.

We are concerned with achieving both good security and good privacy, and while it is 
possible to have security without privacy, it is not possible to have privacy without secu-
rity. Thus, our approach is to first ensure a good level of security can be achieved, and in 
Section 2, we discuss from our perspective how we have set about developing and extend-
ing this idea. In Section 3, we identify the issues that need to be addressed. In Section 4, we 
discuss why these issues are important, and what the potential implications for security and 
privacy are likely to be. In Section 5, we consider some current solutions proposed to address 
some of these issues and consider why they do not really address all the issues. In Section 6, 
we outline our proposed approach to resolve these issues, and in Section 7, we discuss our 
conclusions.

2. Development of the idea

The authors have developed a novel approach to addressing these problems through the 
use of unikernel-based systems, which can offer a lightweight, green and secure approach to 
solving these challenging issues. Duncan et al. [9] started by outlining a number of issues faced 
and explained how a unikernel-based approach might be used to provide a better solution. 
Bratterud et al. [10] provide a foundation for the development of formal methods, and to pro-
vide some clarity on the identification and use of good clear definitions in this space.

A unikernel is by default a single threaded, single address space mechanism taking up 
minimal resources, and [11] look at how the concept of single responsibility might be 
deployed through the use of unikernels in order to reduce complexity, thus reducing the 
attack surface and allowing for a better level of security to be achieved. Given the worrying 
expansion of security exploits in IoT, as exemplified by recent DDoS attacks facilitated by the 
inherent security weaknesses present in IoT architecture, Duncan et al. [12] looked at how the 
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unikernel approach might be useful when used for IoT and big data applications. Duncan 
and Whittington [13] consider how to develop an immutable database system using existing 
database software, thus providing the basis for a possible solution for one of the major needs 
of the framework.

Unikernels use the concepts of both single address space and single execution flow. A 
monolithic application could be converted into a single large unikernel, but this would forfeit 
any real benefits to be gained from this architecture. To prevent this, we propose a framework 
that aids the deconstruction of business processes into multiple connected unikernels. This 
would allow us to develop complex systems, albeit in a much more simple, efficient, secure 
and private way. We must also develop a framework to handle the automated creation 
and shutting down of multiple unikernels, possibly carrying out a multiplicity of different 
functions at the same time. This concept is likely to be far more secure than conventional 
approaches. During runtime, the framework will be responsible for creation, monitoring 
and stopping of different unikernel services. While unikernels themselves do provide good 
functional service isolation, external monitoring is essential to prevent starvation attacks, 
such as where one unikernel effectively performs a denial-of-service attack by consuming all 
available host resources.

We have identified a number of other areas, which will need further work. We are currently 
working on developing a means to achieve a secure audit trail, a fundamental requirement 
to ensure we can retain as complete a forensic trail as possible, for which we require to 
understand how to properly configure an immutable database system, capable of withstanding 
penetration by an attacker. This work follows on from Ref. [13]. However, in order to run such 
a system, we will need to develop a control system to co-ordinate multiple unikernel instances 
operating in concert. We will also have to develop a proper access control system to ensure 
we can achieve confidentiality of the system and to maintain proper privacy. To help with the 
privacy aspects, we will also require to develop a strong, yet efficient approach to encryption.

In addition, the framework must provide means of input/output for managed unikernels, 
including facilities for communication and data storage.

Communication is both concerned with inter-unikernel communication as well as with providing 
interfaces for managed unikernels to the outside world. As we foresee a message-passing infra-
structure, this should provide means for validating passed messages including deep packet 
inspection. This allows for per-unikernel network security policies and further compartmental-
ization, which should minimize the impact of potential security breaches.

In real-world use cases, we require the framework to be capable of handling mutable data, 
such as the ability to record temporary states, logging information or ensuring that persistent 
application and or user data can be maintained. Unikernels themselves by definition are 
immutable. In order to resolve this conflict, the framework must provide a means to persist 
and QUERY data in a race-free manner. It may be necessary to provide specialized data 
storage, depending on the use case. For example, system log and audit trail data require 
special treatment to prevent loss of a complete forensic record, thus requiring an append-only 
approach. Since persistent data storage is inherently contrary to our immutable unikernel 
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approach, we do not enforce data storage to be implemented within unikernels. Being prag-
matic, we defer this functionality to the framework, i.e. a means of storage is provided by the 
framework, rather than by the unikernels themselves.

We also believe it may be possible to develop a unikernel-based system to work with the 
serverless paradigm. With those frameworks, source code is directly uploaded to the cloud 
service. Execution is triggered in response to events; resources are automatically scaled. 
Developers do not have any system access except through the programming language and 
provided libraries. We see unikernel and serverless frameworks as two solutions to a very 
similar problem, reducing the administrative overhead and allowing developers to focus their 
energy on application development. Serverless stacks signify the “corporate-cloud” aspect: 
developers upload their code to external services and thus invoke vendor lock-in in the long 
run. Unikernels also allow users to minimize the non-application code, but in contrast to 
serverless architectures, this approach maintains flexibility with regard to hosting. Users can 
provide on-site hosting or move toward third-party cloud offerings. We expect serverless 
architecture providers to utilize unikernels within their own offerings. They are well suited 
to encapsulate the user provided applications and further increase the security of the host’s 
infrastructure.

We are also developing penetration testing approaches, using fuzzing techniques, adapting tools 
and sanitizers, hardening tools and whatever else we can do to strengthen the user environment 
to achieve our aims. The ultimate goal is to make life so difficult for the attacker that they will be 
forced to give up and move on to easier pickings elsewhere. We have also been applying all the 
usual attack methods to our test systems to assess whether our approach will work. This should 
allow us to be sure that each component will be fit for purpose before we move on to the next 
component. In this way, by developing each component of the system to automatically integrate 
with the rest, the system should ultimately become far more robust as a result.

We now have a good idea of how the concept needs to be developed, and what future plans 
are needed to progress the development toward a highly secure and efficient system for cloud 
users. In the next section, we consider what exactly the issues are that we need to address in 
more detail.

3. What are the issues?

The fundamental concepts of information security are confidentiality, integrity, and availability 
(CIA), which is also true for cloud security. The business environment is constantly chang-
ing [14], as are corporate governance rules and this would clearly imply changing security 
measures would be required to keep up to date. More emphasis is now being placed on 
responsibility and accountability [15], social conscience [16], sustainability [17, 18], resilience 
[19] and ethics [20]. Responsibility and accountability are, in effect, mechanisms we can use 
to help achieve all the other security goals. Since social conscience and ethics are very closely 
related, we can expand the traditional CIA triad to include sustainability, resilience and ethics. 
These, then, must be the main goals for information security.
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We now consider a list of ten key management security issues identified in Ref. [1], which 
provide detailed explanations for each of these items on the list. These items represent 
management-related issues, which are often not properly thought through by enterprise 
management.

The 10 key management security issues identified are:

•	 the definition of security goals,

•	 compliance with standards

•	 audit issues,

•	 management approach,

•	 technical complexity of cloud,

•	 lack of responsibility and accountability,

•	 measurement and monitoring,

•	 management attitude to security,

•	 security culture in the company,

•	 the threat environment.

These are not the only issues to contend with. There are a host of technical issues to address, as 
well as other, less obvious issues, such as social engineering attacks, insider threats (especially 
dangerous when perpetrated in collaboration with outside parties), state-sponsored attacks, 
advanced persistent threats, hacktivists, professional criminals, and amateurs, some of 
whom can be very talented. There are many known technical weaknesses, particularly in 
web-based systems, but the use of other technology such as mobile access, “bring your own 
device” (BYOD) access, and IoT can all have an adverse impact on the security and privacy 
of enterprise data.

In spite of what is known about these issues, enterprises often fail to take the appropriate 
action to defend against them, or do not understand how to implement or configure this 
protection properly, leading to further weakness. Staff laziness can be an issue. Failure to 
adhere to company security and privacy policies can also be an issue. Use of passwords, 
which are too simple, is an issue. Simple things, such as the use of yellow stickies can be a 
dangerous weakness when stuck on computer screens, with the user password in full view 
for the world to see.

Lack of training for staff on how to properly follow security procedures can lead to weakness. 
Failure to patch systems can be a serious issue. Poor configuration of complex systems is often 
a major area of weakness. Poor staff understanding of the dangers in email systems presents 
a major weakness for enterprises. Failure to implement simple steps to protect against many 
known security issues presents another problem. Lack of proper monitoring of systems pres-
ents a serious weakness, with many security breaches being notified by third-party outsiders, 
usually long after the breach has occurred.
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We will take a look at some of these technical vulnerabilities next, starting with one of the 
most obvious. Since cloud is enabled through the Internet, and web-based systems play a 
huge role in providing the fundamental building blocks for enterprise systems architecture, it 
makes sense to look at the vulnerabilities inherent in web-based systems.

3.1. Web vulnerabilities

Security breaches have a negative monetary and publicity impact on enterprises, thus are 
seldom publicly reported. This limits the availability of empirical study data on actively 
exploited vulnerabilities. However, web vulnerabilities are well understood, and we can 
source useful information on the risks faced through this medium by using data from the 
work of the Open Web Application Security Project (OWASP) [21], who publish a top 10 list 
of web security vulnerabilities every 3 years.

The OWASP Top 10 report [21] provides a periodic list of exploited web application 
vulnerabilities, ordered by their prevalence. OWASP focuses on deliberate attacks, each of 
which might be based upon an underlying programming error—for example, an injection 
vulnerability might be the symptom of an underlying buffer overflow programming error. 
OWASP also provides the most comprehensive list of the most dangerous vulnerabilities and 
a number of very good mitigation suggestions. The last three OWASP lists for 2007, 2010 and 
2013 are provided in Table 1.

This list, based on the result of analysis of successful security breaches across the globe, 
seeks to highlight the worst areas of weakness in web-based systems. It is not meant to be 

2013 2010 2007 Threat

A1 A1 A2 Injection attacks

A2 A3 A7 Broken authentication and 
session management

A3 A2 A1 Cross site scripting (XSS)

A4 A4 A4 Insecure direct object 
references

A5 A6 - Security misconfiguration

A6 - - Sensitive data exposure

A7 - - Missing function level 
access control

A8 A5 A5 Cross site request forgery 
(CSRF)

A9 - - Using components with 
known vulnerabilities

A10 - - Unvalidated redirects and 
forwards

Table 1. OWASP top ten web vulnerabilities—2013 to 2007 [21].
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exhaustive, but instead merely illustrates the worst 10 vulnerabilities in computing systems 
globally. It is clearly concerning that the same vulnerabilities continue to recur year after year, 
which clearly demonstrates the failure of enterprises to adequately protect their resources 
properly.

Thus in any cloud-based system, these vulnerabilities are likely to be present. However, there 
are likely to be additional potential vulnerabilities, which will also need to be considered. 
We group the different vulnerabilities into three classes based on their impact on software 
development. Low-level vulnerabilities can be solved by applying local defensive measures, 
such as using a library at a vulnerable spot. High-level vulnerabilities cannot be solved by local 
changes, but instead need systematic architectural treatment. The last class of vulnerability 
is application workflow-specific and cannot be solved automatically but instead depends on 
thoughtful developer intervention.

Two of the top three vulnerabilities, A1 and A3, are directly related to either missing input 
validation or output sanitation. Those issues can be mitigated by consistently utilizing 
defensive security libraries. Another class of attack that can similarly be solved through a 
“low-level” library approach is A8. By contrast, “high-level” vulnerabilities should be solved 
at an architectural level. Examples of these are A2, A5 and A7. The software architecture 
should provide generic means for user authentication and authorization, and should enforce 
these validations for all operations. Some vulnerability classes, i.e. A4, A6 and A10, directly 
depend on the implemented application logic and are hard to protect against in a generic 
manner. Some other vulnerabilities can be prevented by consistently using security libraries, 
while other vulnerabilities can be reduced by enforcing architectural decisions during 
software development.

New software projects are often based upon existing frameworks. Those frameworks bundle 
both default configuration settings as well as a preselection of libraries providing either 
features or defensive mechanisms. Software security is mostly regarded as a non-functional 
requirement and thus can be hard to get funding for. Those opinionated frameworks allowed 
software developers to focus on functional requirements while the frameworks took care of 
some security vulnerabilities.

Over the years, those very security frameworks have grown in size and functionality, and 
as they themselves are software products, they can introduce additional security problems 
into otherwise secure application code. For example, while the Ruby on Rails framework, 
properly used, prevents many occurrences of XSS-, SQLi- and CSRF-attacks, recent problems 
with network object serialization introduced remotely exploitable injection attacks [22]. The 
affected serialization capability was not commonly used but was included in every affected 
Ruby on Rails installation. Similar problems have plagued Python and its Django framework 
[23]. All of these are further aggravated as, by design, software frameworks are generic—
they introduce additional software dependencies, which might not be used by the application 
code at all. Their configuration often focuses on developer usability, including an easy debug 
infrastructure. Unfortunately, from a security perspective, everything that aids debugging 
also aids penetration.
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OWASP acknowledged this problem in its 2013 report by introducing A9. The reason for adding 
a new attack vector class was given as: “the growth and depth of component based development 
has significantly increased the risk of using known vulnerable components” [21].

Of course, when it comes to the use of IoT with cloud, we need to look beyond basic web vul-
nerabilities. The IoT can also use mobile technology to facilitate data communication, as well 
as a host of inherently insecure hardware, and we look at this in more detail in the next section.

3.2. Some additional IoT vulnerabilities

OWASP now produces a list of the worst 10 vulnerabilities in the use of mobile technology, 
which we show in the list of Table 2.

Of course, it is not quite as simple as that the IoT mechanics extend beyond traditional web 
technology and mobile technology. In 2014, OWASP also developed a provisional top 10 list 
of IoT vulnerabilities, which we outline in Table 3.

An important point to bear in mind is that the above list represents just the OWASP top 10 
vulnerability list. OWASP is currently working on a full list of 130 possible IoT vulnerabilities, 
which should be taken into account. OWASP also provides some very good suggestions on 
how to mitigate these issues.

While the above just covers security issues, we also have to consider the challenges presented 
by privacy issues. With the increase in punitive legislation and regulation surrounding issues 
of privacy, we must necessarily concern ourselves with providing the means to ensure the 
goal of privacy can be achieved. The good news is that if we can achieve a high level of secu-
rity, then it will be much easier to achieve a good level of privacy [9]. Good privacy is heavily 
dependent on having a high level of security. We can have security without privacy, but we 
cannot have privacy without security.

2013 code Threat

M1 Insecure data storage

M2 Weak server side controls

M3 Insufficient transport layer protection

M4 Client side injection

M5 Poor authorization and authentication

M6 Improper session handling

M7 Security decisions via untrusted inputs

M8 Side channel data leakage

M9 Broken cryptography

M10 Sensitive information disclosure

Table 2. OWASP top ten mobile vulnerabilities—2013 [21].
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While the IoT has progressed significantly in recent years, both in terms of market uptake 
and in increased technical capability, it has very much done so at the expense of security and 
privacy. For example, accessing utility companies, including nuclear in the US [25], damage 
caused to German steel mill by hackers [26], drug dispensing machines hacked in US [27], 
plane taken over by security expert mid-air [28], and a hack that switched off smart fridges 
if it detected ice cream [29]. While enterprises often might not care too much about these 
issues, they should. If nothing else, legislators and regulators are unlikely to forget, and will 
be keen to pursue enterprises for security and privacy breaches. In previous years, it was often 
the case that legislators and regulators had little teeth, but consider how punitive fines have 
become in recent years following the banking crisis in 2008. In the UK in 2014, the Financial 
Conduct Authority (FCA) fined a total of £1, 427, 943, 800 [30], during the year, a more than 
40 fold increase on 5 years previously.

As we already stated in Section 1, there are no standards when it comes to components for 
the IoT. This means there is a huge range of different architectures vying for a place in this 
potentially massive market space. Obviously, from a technical standpoint, greater flexibility 
and power can be obtained through good use of virtualization. Virtualization is not new and 
has been around since 1973 [31]. Bearing in mind that dumb sensors do not have enough 
resources or lack hardware support for virtualization (or at least Linux-based virtualization), 
we will have a quick look at some of the most popular hardware in use in this space.

ARM [32] presented the ARM capabilities in 2009. ARM is one of the most used platforms in 
the IoT and has virtualization extensions. Columbia University has developed KVM/ARM, an 
open-source ARM virtualization system [33]. Dall and Nieh [34] have written an article on this 
work for LWN.net and for a conference [35]. Paravirtualization support in ARM Coretex A8 has 
been around since 2006, and ARM Coretex A9 since 2008, with full virtualization since approxi-
mately 2009. Virtualization is also in Linux Kernel 3.8. There are also MMU-less ARMs, although 
it is unlikely that these could be used, unless we were to forfeit the unikernel’s protection.

2014 Code Threat

I1 Insecure web interface

I2 Insufficient authentication/authorization

I3 Insecure network services

I4 Lack of transport encryption

I5 Privacy concerns

I6 Insecure cloud interface

I7 Insecure mobile interface

I8 Insufficient security configure-ability

I9 Insecure software/firmware

I10 Poor physical security

Table 3. OWASP top ten IoT vulnerabilities—2014 [24].
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Many modern smart devices can handle virtualization—devices such as play stations, smart 
automotive systems, smart phones, smart TVs and video boxes. This may not necessarily be 
the case for small embedded components, such as wear-ables, sensors and other IoT compo-
nents. MIPS also supports virtualization [36, 37]. Some Intel Atom processors support vir-
tualization (the atom range is huge). However, the low-power Intel Quark has absolutely 
no support for virtualization. The new open-source RISC-V architecture [38] does support 
virtualization.

Many current IoT systems in use do have the capability to handle virtualization. For exam-
ple, most high-powered NAS systems now have virtualization and application support. 
Thus, we could potentially utilize NAS or other low-powered devices, many of which are 
ARM, MIPS or x86, to aggregate data on-site and then transport the reduced volume of data 
to the cloud.

Right now, we must carefully consider the current state of security and privacy in a massively 
connected world. It is clear that “big brother” is very capable of watching. Not just through 
the use of massive CCTV networks, but also through IoT-enabled devices, which will become 
embedded in every smart city. It is estimated that in smart cities of the future, there will be 
at least 5000 sensors watching as you move through the city at all times. How much personal 
information could leak as you walk? How much of your money could NFC technology in the 
wrong hands steal from you, without you being aware of it happening? Do you trust the cur-
rent technology? We can read about more of these issues in Ref. [39].

3.3. Some basic enterprise vulnerabilities

Of course, there are some additional enterprise vulnerabilities that we also need to take 
into account. These are frequently exploited by the threat environment, and thankfully, 
we have access to some statistics collected by various security breach reports issued by 
many security companies [40–42], which will clearly demonstrate the security and privacy 
problems still faced today, including the fact that the same attacks continue to be successful 
year on year, as demonstrated by the six-year summary of the Verizon reports shown in 
Table 4. There is no figure provided by Verizon for 2015, as they changed the layout for 
that year.

We have been looking at an extensive range of management and technical issues above. Yet, 
there are some fundamental issues which impact directly on the people in the enterprise, as 
exemplified by the image below in Figure 1.

These attacks have been successfully used for decades, in particular the first three, which also 
happen to be the most devastating. It is no joke to state that in any organization “People are 
the weakest link”, because the first three rely entirely on the inattentiveness and stupidity of 
users to succeed.

Thus, we can see that there are a considerable number of issues, which all enterprises will 
face when considering how to run a system, which can offer both a good level of security 
and privacy. It is necessary to raise awareness of these issues and reasons as to why they are 
important, and so, we take a look at this in the next section.
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4. Why this is important

This question is fairly obvious and easy to answer. Security breaches have a negative mon-
etary and publicity impact on enterprises. In light of the increasing fine levels being applied 
by regulators, particularly in the light of the forthcoming EU General Data Protection 
Regulation (GDPR), which introduces the potential for a massive increase in fine levels, 
enterprises are starting to understand just how much of an impact this will have for them. 
The impact on an enterprise of a breach can be considerable, particularly, as often happens, 
where the breach is identified by third parties. This generally ensures that the impact on 
reputation will be much higher.

Staff often cannot believe that a breach has taken place, and by the time they realize what has 
happened, the smart attackers have eradicated all traces of their incursion into the system. 

Threat 2010 2011 2012 2013 2014 2016

Hacking 2 1 1 1 1 1

Malware 3 2 2 2 2 2

Misuse by company 
employees

1 4 5 5 5 4

Physical theft or 
unauthorized access

5 3 4 3 4 6

Social engineering 4 5 3 4 3 3

Table 4. Verizon top 5 security breaches—2010 to 2014, 2016 (1 = highest) [40, 43–47].

Figure 1. The most successful people attacks ©2015 Verizon.
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There will be virtually zero forensic evidence, so even bringing in expensive security con-
sultants with highly competent forensic teams will be of little value. Quite apart from the 
possible financial loss to the company from any theft of money or other liquid assets, there 
will be the possibility of huge reputational damage, which can have a serious negative impact 
on their share price. Such enterprises are unlikely to have a decent business continuity plan 
either, which makes recovery even more difficult.

If an enterprise cannot tell how the attackers got in, what data they stole, or compromised, or 
how they got their hands on whatever was removed, it will be very difficult, time consuming 
and expensive to recover from such an event. Where an enterprise has a robust defen-
sive strategy implemented, at least in the event of a breach, they will have a better chance 
of containing the impact of the breach, and a better chance of being able to learn from the 
evidence left behind.

Another good reason for considering this as an important issue is that it may well be a 
mandatory legislative or regulatory requirement for the enterprise to maintain such a 
defensive system. It is clear that legislators and regulators have started to take cyber security 
far more seriously, and therefore, it is likely that the level of fines levied for breaches will 
continue to rise.

We provide here a few examples to demonstrate how the authorities are starting to get 
tougher:

•	 In 2016, ASUS was sued by the Federal Trade Commission (FTC) [48], because they were 
not providing updates for their insecure routers.

•	 In January, the FTC started investigations into D-Link [49, 50], “Defendants have failed 
to take reasonable steps to protect their routers and IP cameras from widely known and 
reasonably foreseeable risks of unauthorized access, including by failing to protect against 
flaws which the Open Web Application Security Project has ranked among the most critical 
and widespread web application vulnerabilities since at least 2007”.

•	 Schneier [51] recently spoke in front of the US House in favor of legal frameworks for IoT 
Security.

•	 In the EU, the General Data Protection Regulation (GDPR) will come into force in May 2018. 
It will also increase this (monetary) problem for companies with a maximum monetary 
penalty for a single breach of the higher of €10m or 2% of global turnover, and for a more 
serious breach involving multiple failings, the higher of €20m or 4% of global turnover.

Despite the fact that cyber security is often seen as falling into the “Cinderella” category of 
IT expenditure, there is abundant evidence that there are clear benefits to be derived from 
taking this matter seriously. For those who are not entirely convinced by these arguments, 
there are many security breach companies who compile annual reports showing the 
most successful breaches, providing some insight into the weaknesses that expose these 
vulnerabilities, and discussing the potential mitigation strategies that might be deployed 
in defense of these attacks. In the next section, we take a look at how current solutions 
approach these issues.
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5. Current solutions

Over recent years, a great many solutions to these problems have been proposed, developed and 
implemented. The early works were generally directed toward conventional corporate distributed 
IT systems. By comparison to the cloud, these are generally well understood and relatively easy 
to resolve, and many companies have enjoyed good levels of protection as a result of these efforts. 
However, cloud changes the rules of the game considerably; because there is often a poor under-
standing of the technical complexities of cloud, and often a complete lack of understanding that 
the cloud runs on someone else’s hardware and often software too,  resulting in a huge issue from 
lack of proper control. With cloud, the lack of proper and complete security standards [6] also 
presents a major issue, as does the method of implementing compliance with these standards [52].

The other major issue, particularly when cloud is involved, is that implementing partial solu-
tions, while very effective for the specific task in hand, will not offer a complete solution to 
the security problem. There are a great many potential weaknesses involved in cloud systems, 
and without taking a much more comprehensive defensive approach, it will likely prove 
impossible to effectively secure systems against all the threats faced by enterprises.

Any solution, which only addresses partially the overall security of the enterprise, will be 
doomed to failure. The only way to be sure a solution will work, will be to properly identify 
the risks faced by the organization and provide a complete solution to attempt to mitigate 
those risks, or to accept the particular risks with which the enterprise is comfortable. A 
fundamental part of this process, which is all too frequently forgotten, is the need to monitor 
what is happening in the enterprise systems after the software solution is installed, not when-
ever compliance time comes around, but day to day on an ongoing basis.

There are two major trends developing in the quest to tackle these issues:

1.	 preventing security breaches,

2.	 accepting that security breaches will happen and trying to contain breaches.

Traditionally, perimeter security such as firewalls is utilized to prevent attackers from entering 
the corporate network. The problem with this approach is that this model was well suited to net-
work architectures comprising a few main servers with limited connections between clients and 
servers. However, as soon as the number of connections explodes, this approach can no longer 
cope with the demand. This first occurred with the influx of mobile devices and will again become 
problematic as new Industry 4.0 and IoT devices continue to be implemented and expanded.

We take a look at some of the current solutions available today and will discuss potential 
weaknesses which pertain to them. The following list shows the most common approaches to 
tackle cloud cyber security issues:

•	 Perimeter security (e.g. firewalls) problems with IoT, etc.

Perimeter Security prevents malicious actors from entering the internal—private—network. 
Traditionally based on network packet inspection at important network connection points, 
e.g., routers, by now it includes endpoints such as client computers or mobile devices;
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•	 Sandboxes, e.g. for analysis

Sandboxes: traditionally anti-virus software utilized signature-based blacklists. Due to 
newer evasion techniques, e.g., polymorphic payloads, those engines provide insuf-
ficient detection rates. Newer approaches utilize sandboxes, e.g., emulate a real system 
within which the potentially malicious payload is executed and traced. If the payload’s 
behavior seems suspicious, it is quarantined;

•	 Virtualization

Virtualization solutions allow program execution within virtual machines. As multiple vir-
tual machines can execute on the same physical host, this allows separation of applications 
into separate virtual machines. As those cannot interact, this creates resilience in the face 
of attacks—a successful attack only compromises a single application instead of the whole 
host. Virtualization is also used to implement sandboxes, easy software deployment, etc.;

•	 Containers

Containers: originally used to simplify software deployments. Newer releases of con-
tainer technologies allow for better isolation between containers. This solves similar 
problems as virtual machines while improving memory efficiency;

•	 Software development: secure lifecycles (testing, etc.)

Software Development: recently security engineering has become a standard part of soft-
ware development approaches, e.g., Microsoft Secure Development Life-cycle. Mostly, 
this focuses on early security analysis of potential flaws and attacks and subsequent 
verification of implemented mitigations;

•	 Software development: new “safe” languages

New Programming Languages: as programs are implemented within a given program-
ming language, their security features are very important for the security of the final 
software product. A good example are common memory errors in programs written 
in C-based programming languages. Recently, a new generation of programming lan-
guages aim to provide both performance and safety—examples of those are Rust, Go or 
Swift. Rust has seen uptake by the Mozilla community and is being used as part of the 
next-generation JavaScript engine. Go is used for systems programming and has been 
adopted by many virtualization management and container management solutions;

•	 Software development: hardening (i.e., fuzzing)

Fuzzing: new tooling allows for easy fuzzing of application or operation system code. 
Automated appliance of this attack technique has yielded multiple high-level memory 
corruption errors recently;

•	 Software development: hardening (i.e., libraries)

Hardened Libraries and Compilers: recent processors provide hardware support for 
memory protection techniques. Newer compilers allow for automatic and transparent 
usage of those hardware features—on older architectures, similar features can be imple-
mented in software yielding slightly lower security and performance;
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•	 Architecture: (micro)services

Microservice Architectures encapsulate a single functionality within a microservice that 
can be accessed through standardized network protocols. If implemented correctly, 
each service contains minimal state and little deep interaction with external services. 
This implicitly implements the Separation of Concern principle and thus helps security 
by containing potential malicious actors.

The serverless paradigm is also gaining some traction and examples for this software stack 
can be seen in Table 5.

Another recent security battleground is the IoT. Recent examples are the 1Tbps attack against 
“Krebs on Security” or the 1.2Tbps DDoS attack taking out Dyn in October 2016 [53]. While 
the generic security landscape is already complex, IoT adds additional problems such as 
hard device capability restrictions, manifold communication paths and very limited means of 
updating already deployed systems. In addition, software is often an after-thought; for exam-
ple, for usage within power-grids, all hardware must be certified with regard to their primary 
focus (i.e. power distribution). All later alterations, such as security-critical software updates, 
would void the certification and thus produce substantial costs for the device manufacturer. 
This leads to a situation where security updates are scarce in the best scenario. Unikernels 
can improve upon the current situation [12] on both the device as well as at the cloud-level. 
It should be understood that device level means on the local sensors/actors (problems with 
security and updates) and cloud level is for scale-out of backend processing of data generated 
by IoT devices.

6. Proposed solutions

The most interesting aspect of unikernels from a security point of view is their inherent 
minimalism. For the purpose of this chapter, we define unikernels as:

•	 a minimal execution environment for a service,

•	 providing resource isolation between those services,

•	 offering no data manipulation on persistent state within the unikernel, i.e. the unikernel 
image is immutable,

Product Supported languages

Amazon Lambda Java, Node.js, Python

Google Cloud Functions Node.js

IBM BlueMix Languages supported by CloudFountry, e.g. Java, Node.
js, Go, C#, PHP, Python, Ruby

Microsoft Azure Functions C#, F#, Node.js, Python, PHP

Table 5. Example of serverless offerings ©2016 Happe, Duncan and Bratterud.
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•	 being the synthesis of an operating system and the user application,

•	 only offering a single execution flow within the unikernels, i.e. no multitasking is performed.

The unikernel approach yields an architecture that implicitly follows best software architecture 
practices, e.g. through the combination of minimalism and single execution flow, the separation 
of concern principle is automatically applied. This allows for better isolation between concur-
rent unikernels.

It is absolutely necessary to recognize the magnitude of the dangers posed by the threat 
environment. Enterprises are bound by legislation, sometimes regulation, the need to comply 
with standards, industry best practice, and are accountable for their actions. Criminals have 
no such constraints. They are completely free to bend every rule in the book, do whatever they 
want, manipulate, cajole, hack or whatever it takes to get to the money. They are constantly 
probing for the slightest weakness, which they are more than happy to exploit without 
mercy. It is clear that the threat environment is developing just as quickly as the technological 
changes faced by the industry [6, 54, 55]. We need to be aware of this threat and minimize the 
possible impact on our framework. While we have absolutely no control over attackers, we 
can help reduce the impact by removing as many of the “classic attack vectors” as possible, 
thus making their life far more difficult. The more difficult it becomes for them to get into the 
system, the more likely they will be to go and attack someone else’s system.

In the interests of usability, many more ports are open by default than are needed to run a 
system. An open port, especially one which is not needed (and therefore not monitored) is 
another route in for the attacker. We also take the view that the probability of vulnerabilities 
being present in a system increases proportionally to the amount of executable code it contains. 
Having less executable code inside a given system will reduce the chances of a breach and 
also reduce the number of tools available for an attacker once inside. As Meireles [56] said 
in 2007 “… while you can sometimes attack what you can’t see, you can’t attack what is not 
there!”. We address these issues by making the insides of the virtual machine simpler. We 
also propose to tackle the audit issue by making configuration happen at build time [57, 58], 
and then making services be “immutable” after deployment, making “configuration lapses” 
(i.e. through conflicts caused by unnecessary updates to background services etc.) unlikely.

Bearing in mind the success with which the threat environment continually attacks business 
globally, it is clear that many enterprises are falling down on many of the key issues we have 
highlighted in Section 3. It is also clear that a sophisticated and complex solution is unlikely 
to work. Thus, we must approach the problem from a more simple perspective.

6.1. Unikernel impact on efficiency

Cloud achieves maximum utilization and high energy efficiency through consolidating 
processing power within data centers. Multiple applications run on the same computing 
node, but often control on node placement or on concurrently running applications are not 
possible. This means for security, isolation between different applications, users, or services, 
is critical. A popular but inefficient solution is to place each application or service within a 
virtual machine [59]. This is very similar to the initial usage of virtualization within host-based 
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systems; Madnick gives a good overview of the impact of virtualization in Ref. [60]. Containers 
could present a more efficient approach [61], but as they were originally developed to improve 
deployment, their security benefits are still open to debate [62].

A useful benefit of the applied minimalism is a reduced memory footprint [63, 64] plus a quick 
start-up time for unikernel-based systems. Madhavapeddy et al. utilize this for on-demand 
spin-up of new virtual images [65], allowing for higher resource utilization, leading to 
improved energy efficiency.

6.2. Unikernel impact on security

The most intriguing aspect of unikernels from a security perspective is their capability as a 
minimal execution environment. We can now define the attack surface of a system as:

Definition 6.1 attack surface. The amount of bytes within a virtual machine [10].

When it comes to microcode, firmware and otherwise mutable hardware such as field-
programmable gate arrays (FPGAs), physical protection can be seen as a gray area. This 
definition is intentionally kept general in order to allow further specifications to refine the 
meaning of “physically available” for a given context. The following example can serve to 
illustrate how the definition can be used for one of many purposes.

Building a classic VM using Linux implies simply installing Linux and then installing the 
software on top. Any reduction in attack surface must be done by removing unneeded 
software and kernel modules (e.g. drivers). Take TinyCore Linux as an example of a minimal 
Linux distribution and assume that it can produce a machine image of 24MB in size.

During the build of a unikernel, minimization is performed, meaning the resulting system 
image only includes the minimum required software dependencies. This implies that no 
binaries, shell or unused libraries are included within the unikernel image. Even unused 
parts of libraries should never be included within the image. This radically reduces included 
functionality and thus the attack surface. In addition, this can loosen the need for updates after 
vulnerabilities have been discovered in included third-party components—if the vulnerable 
function was not included within the set of used functions, an update can be moot.

The situation after a security breach with unikernels is vastly different to traditional systems. 
Assuming that the attacker is able to exploit a vulnerability, e.g. buffer overflow, he gains 
access to the unikernel system’s memory. Due to having no binaries and only reduced 
libraries, writing shell code [66], a machine code that is used as a payload during vulnerability 
execution will not work. Common payloads spawn command shells or abuse existing libraries 
to give attackers access through unintended possibilities, which is complicated. Pivot attacks 
depending on shell-access are thwarted. But, all direct attacks against the application, e.g. 
data extraction due to insecure application logic, are still possible. A good example of this is 
the recent OpenSSL Heartbleed vulnerability [67]. A unikernel utilizing OpenSSL would also 
be vulnerable to this, thus allowing an attacker to access its system memory, including the 
private SSL key. We argue that functionality should be split between multiple unikernels to 
further compartmentalize breaches.
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Next-generation hardware-supported memory protection techniques can benefit from mini-
malism. For example, the Intel Secure Guard Extensions [68, 69] allow for protected mem-
ory enclaves. Accessing these directly is prohibited and protected through specialized CPU 
instructions. The protection is enforced by hardware, so even the hypervisor can be prevented 
from accessing protected memory. Rutkowska has shown [70] that deploying this protection 
scheme for applications has severe implications. Just protecting the application executable 
is insufficient, as attacks can inject or extract code within linked libraries. This leads us to 
conclude that the whole application including its dependencies must be part of the secure-
memory enclave. Simplicity leads to a “one virtual machine per application” model, which 
unikernels inherently support. We propose that unikernels are a perfect fit for usage with 
those advanced memory protection techniques.

Returning to the theme of “software development frameworks providing sensible defaults but 
­getting bloated, and thus vulnerable over time”, unikernels provide an elegant solution; while 
the framework should include generic defensive measures, the resulting unikernel will, by 
definition, only include utilized parts, thus reducing the attack surface.

6.3. Service isolation

A fundamental premise for cloud computing is the ability to share hardware. In private cloud 
systems, hardware resources are shared across a potentially large organization, while on 
public clouds, hardware is shared globally across multiple tenants. In both cases, isolating 
one service from the other is an absolute requirement.

The simplest mechanism to provide service isolation is process isolation in classic kernels, relying 
on hardware supported virtual memory, e.g. provided by the now pervasive x86 protected 
mode. This has been used successfully in mainframe setups for decades, but access to termi-
nals with limited user privileges has also been the context for classic attack vectors such as 
stack smashing, root-kits, etc., the main problem being that a single kernel is being shared 
between several processes and that gaining root access from one terminal would give access 
to everything inside the system. Consequently, much work was done in the 1960s and 1970s to 
find ways to completely isolate a service without sharing a kernel. This work culminated in the 
seminal 1974 paper by Popek and Goldberg [71], where they present a formal model describ-
ing the requirements for complete instruction level virtualization, i.e. hardware virtualization.

Hardware virtualization was in wide use on e.g. IBM mainframes since that time, but it was 
not until 2005 that the leading commodity CPU manufacturers, Intel and AMD introduced 
these facilities into their chips. Meantime, paravirtualization had been reintroduced as a 
workaround to get virtual machines to run on these architectures, notably in Ref. [72]. While 
widely deployed and depended upon, the Xen project has recently evolved its paravirtualiza-
tion interface toward using hardware virtualization in, e.g., PVH [73], stating that “PVH means 
less code and fewer Interfaces in Linux/FreeBSD: consequently it has a smaller Trusted Computing 
Base (TCB) and attack surface, and thus fewer possible exploits” [74].

Yet another mechanism used for isolation is operating system-level virtualization with 
containers, e.g. Linux Containers (LXC) popularized in recent years by Docker, where each 
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container represents a userspace operating environment for services that all share a kernel. 
The isolation mechanism for this is classic process isolation, augmented with software controls 
such as cgroups and Linux namespaces. Containers do offer less overhead than classic vir-
tual machines. An example where containers makes a lot of sense would be trusted in-house 
clouds, e.g. Google is using containers internally for most purposes [75]. We take the position 
that hardware virtualization is the simplest and most complete mechanism for service isola-
tion with the best understood foundations, as formally described by Popek and Goldberg, 
and that this should be the preferred isolation mechanism for secure cloud computing.

6.4. Microservices architecture and immutable infrastructure.

Microservices is a relatively new term founded on the idea of separating a system into several 
individual and fully disjoint services, rather than continuously adding features and capabili-
ties to an ever growing monolithic program. Being single threaded by default, unikernels natu-
rally imply this kind of architecture; any need for scaling up beyond the capabilities of a single 
CPU should be done by spawning new instances. While classic VMs require a lot of resources 
and impose a lot of overhead, minimal virtual machines are very lightweight. As demonstrated 
in Ref. [76], more than 100,000 instances could be booted on a single physical server and Ref. 
[58] showed that each virtual machine including the surrounding process requires much less 
memory than a single “Hello World” Java program running directly on the host.

An important feature of unikernels in the context of microservices is that each unikernel VM 
is fully self contained. This also makes them immune to breaches in other parts of the service 
composition, increasing the resilience of the system as a whole. Adding to this, the idea of 
optimal mutability (defined below) and each unikernel-based can in turn be as immutable as is 
physically possible on a given platform. In the next paper in this series, we will expand upon 
these ideas and take the position that composing a service out of several microservices, each 
as immutable as possible, enables overall system architects and decision makers to focus on 
a high-level view of service composition, not having to worry too much about the security of 
their constituent parts. We take the view that this kind of separation of concerns is necessary 
in order to achieve scalable yet secure cloud services.

6.5. No shell by default and the impact on debugging and forensics

One feature of unikernels that immediately makes it seem very different from classic operat-
ing systems is the lack of a command line interface. This is, however, a direct consequence of 
the fact that classic POSIX-like CLIs are run as a separate process (e.g. bash) with the main 
purpose of starting other processes. Critics might argue that this makes unikernels harder to 
manage and “debug”, as one cannot “log in and see what’s happened” after an incident, as is 
the norm for system administrators. We take the position that this line of argument is vacu-
ous; running a unikernel rather corresponds to running a single process with better isolation, 
and in principle, there is no more need to log in to a unikernel than there is to log in to, e.g., a 
web server process running in a classic operating system.

It is worth noting that while unikernels by definition are a single-address-space virtual 
machine, with no concept of classic processes, a read-eval-print loop (REPL) interface can 
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easily be provided (e.g. IncludeOS does provide an example)—the commands just would not 
start processes, but rather call functions inside the program. From a security perspective, we 
take the view that this kind of ad-hoc access to program objects should be avoided. While sym-
bols are very useful for providing a stack trace after a crash or for performance profiling, strip-
ping out symbols pointing to program objects inside a unikernel would make it much harder 
for an attacker to find and execute functions for malicious and unintended purposes. Our 
recommendation is that this should be the default mode for unikernels in production mode.

We take the view that logging is of critical importance for all systems, in order to provide 
a proper audit trail. Unikernels, however, simply need to provide the logs through other 
means, such as over a virtual serial port or ideally over a secure networking connection to a 
trusted audit trail store.

Many UNIX period system administrators will require some mental readjustment due to the 
lack of shell access. On the other hand, the growing DevOps movement [77] abolishes the 
traditional separation into software development and system administration but places high 
importance on the communication between and integration of those two areas. Unikernels 
offer an elegant deployment alternative. The minimized operating system implicitly moves 
system debugging to application developers. Instead of analyzing errors through shell 
commands, developers can utilize debuggers to analyze the whole system, which might be 
beneficial for full-stack engineering.

Lastly, it is worth mentioning that unikernels in principle have full control over a contiguous 
range of memory. Combined with the fact that a crashed VM by default will “stay alive” as 
a process from the VMM perspective and not be terminated, this means that in principle the 
memory contents of a unikernel could be accessed and inspected from the VMM after the fact, 
if desired. Placing the audit trail logs in a contiguous range of memory could then make it 
possible to extract those logs also after a failure in the network connection or other I/O device 
normally used for transmitting the data. Note that this kind of inspection requires complete 
trust between the owner of the VM and the VMM (e.g. the cloud tenant and cloud provider). 
Our recommendation would be not to rely on this kind of functionality in public clouds, 
unless all sensitive data inside the VM is encrypted and can be extracted and sent to the tenant 
without decrypting it.

6.6. Why use unikernels for the IoT?

Why use unikernels for the IoT [78]? Unikernels are uniquely suited to benefit all areas 
(sensor, middleman and servers) within the IoT chain. They allow for unified development 
utilizing the same software infrastructure for all layers. This may sound petty, but who would 
have thought JavaScript could be used on servers (think node.js) a couple of years ago?

Using hardware virtualization as the preferred isolation mechanism, we take the view that 
there are three basic approaches we can use to deliver our requirements, namely the monolithic 
system/kernel approach, the microkernel approach and the unikernel approach. IaaS cloud 
providers will typically offer virtual machine images running Microsoft Windows or one or 
more flavors of Linux, possibly optimized for cloud by, e.g., removing device drivers that are 
not needed. While specialized Linux distributions can greatly reduce the memory footprint 
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and attack surface of a virtual machine, these are general purpose multi-process operating 
systems and will by design contain a large amount of functionality that is simply not needed 
by one single service. We take the position that virtual machines should be specialized to a 
high degree, each forming a single purpose microservice, to facilitate a resilient and fault 
tolerant system architecture which is also highly scalable.

In Ref. [11], we discuss six security observations about various unikernel operating systems: 
choice of service isolation mechanism; use of a single address space, shared between service and 
kernel; no shell by default and the impact on debugging and forensics; the concept of reduced 
attack surface; and microservices architecture and immutable infrastructure. We argue that the 
unikernel approach offers the potential to meet all our needs, while delivering a much reduced 
attack surface, yet providing exactly the performance we require. An added bonus will be the 
reduced operating footprint, meaning a more green approach is delivered at the same time.

6.7. For IoT on the client

Unikernels are a kind of virtualization and offer all of its benefits. They provide application 
developers with a unified interface to diverse hardware platforms, allowing them to focus 
on application development. They provide the ability to mask changes of the underlying 
hardware platform behind the hypervisor, allowing for application code to be reused between 
different hardware revisions. Also, disparate groups within an enterprise often perform 
system and application development. Use of a unikernel decouples both groups, allowing 
development in parallel. Application developers can use a virtualized testing environment on 
their workstations during development, which will mirror the same environment within the 
production environment.

Unikernels can certainly produce leaner virtual machines compared to traditional virtualization 
solutions. This results in a much reduced attack surface, which creates applications that 
are more secure. Use of a resource efficient unikernel, such as IncludeOS, minimizes the 
computational and memory overhead that otherwise would prevent virtualization from 
being used. The small memory and processing overhead enables the use of virtualization on 
low-powered IoT devices and also aids higher capacity devices. Lower resource utilization 
allows for either better utilization (i.e. running more services on the same hardware) or higher 
usage of low power modes, reducing energy consumption, both of which increase the sustain-
ability of IoT deployments.

A feature in high demand by embedded systems is atomic updates. A system supporting 
atomic updates either installs a system update or reverts back to a known working system 
state. For example, Google’s Chrome OS [79] achieves this by using two system partitions. A 
new system upgrade is installed on the currently unused partition. On next boot, the newly 
installed system is now used, but the old system is preselected as a backup boot option if this 
boot does not work. If the new system boots, the new system becomes the new default operat-
ing system and the (now) old partition will be used for the next system upgrade.

This delivers high resilience in the face of potentially disrupting Chrome OS updates. A simi-
lar scheme is set to be introduced for the forthcoming Android Version 7. This scheme would 
be greatly aided by unikernels, as they already provide a clear separation of data and control 
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logic. A system upgrade would therefore start a new unikernel and forward new requests to 
it. If the underlying hypervisor has to be upgraded, likely a very rare event, the whole system 
might incorporate the dual boot-partition approach.

6.8. For IoT on the server

Taking account of the large estimated number of IoT devices to be deployed in the near future, 
computational demand on the cloud can be immense. While IoT amplifies the amount of 
incoming traffic, it has some characteristics that should favor unikernel-like architectures.

Our envisioned unikernels utilize a non-mutable state and are event-based. This allows sim-
plified scale-out, i.e. it allows for dynamically starting more unikernels if incoming requests 
demand it. We believe that many processing steps during an IoT dataflow’s lifetime will be 
parallelizable, e.g. data collected from one household will not interact with data gathered by 
a different household from another continent during the initial processing steps, or possibly 
never at all. Since they do not interact, there is no chance of side effects, thus the incoming 
data can instantly be processed by a newly spawned unikernel.

Two recent trends in cloud computing are cloudlets and fog computing. The first describes 
a small-scale data center located near the Internet’s edge, i.e. co-located near many sensors 
and acting as the upstream collection point for the incoming IoT sensors, while the second 
describes the overall technique of placing storage or computational capabilities near the net-
work edges. A unified execution environment is needed to allow easy use of this paradigm. 
When the same environment is employed, application code can easily be moved from the 
cloud toward the networks’ edge, i.e. into the cloudlets. Unikernels offer closure over the 
application’s code, so the same unikernel can be re-deployed at a cloudlet or within a central 
data center.

The unikernel itself might place requirements on external facilities such as storage, which 
would need to be provided by the current execution environment. A consumer-grade version 
of this trend can already be seen in many high-powered NAS devices, which allow for local 
deployment of virtual machines or containers. This moves functionality from the cloud to a 
smallest-scale local processing environment. A good use case for this would be Smart Homes; 
here, a local NAS can perform most of the computations and then forward the compressed 
data toward a central data center. Also, this local preprocessing can apply various crypto-
graphic processes to improve the uploaded data’s integrity or confidentiality.

7. Conclusions

We have taken a good hard look at cyber security in the cloud, and in particular, we have 
considered the security implications of the exciting new paradigm of the IoT. While the 
possibilities are indeed exciting, the consequences of getting it wrong are likely to be cata-
strophic. We cannot afford to carry blindly on. Instead, we must recognize that if the issues we 
have outlined on security and privacy are not tackled properly, and soon, we will all be sleep-
walking into a disaster. However, if we realize that we need to take some appropriate actions 
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now, then we will be much better placed to feel comfortable in living in an IoT world. There 
are considerable potential benefits for everyone to be offered from using our unikernel-based 
approach. While we see security and confidentiality of data as paramount—and given the 
forthcoming EU’s GDPA, we believe the EU agrees. Security and privacy do not directly trans-
late into a direct monetary benefit for companies and thus are seldom given enough incentive 
for change to allow serious improvement to gain traction. To better convince enterprises, we 
offer the added benefit of increased developer efficiency. Experienced and talented developer 
resources are scarce at hand, so making the most of them is in an enterprise’s best interest. The 
broad application of a virtualization solution allows them to better reuse existing knowledge 
and tools, as developers gain a virtual long-term environment that they can work in.

Virtualization in combination with the special state-less nature of many unikernels provides 
a solution for short-term processing spikes. Processing can be scaled-out to in-company or 
public clouds by deploying unikernels as they do not require external dependencies and as 
they do not contain state, deployments are simplified. After their usage, they can be discarded 
(no state also means that no compromising information is stored at the cloud provider). In 
the case of sensitive information, special means, e.g. homomorphic encryption or verifiable 
computing technologies need to be employed to protect data integrity or confidentiality.

Unikernels offer a high energy efficiency. This allows companies to claim higher sustainability 
for their solutions while reducing their energy costs. We view our proposed solution as tak-
ing a smart approach to solving smart technology issues. It does not have to be exorbitantly 
expensive to do what we need, but by taking a simple approach, sensibly applied, we can all 
have much better faith in the consequences of using this technology (as well as having the 
comfort of being able to walk through a smart city without having our bank account emptied).
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