Enterprise loT Security and Scalability:
How Unikernels can Improve the Status Quo

Bob Duncan
Computing Science
University of Aberdeen
Aberdeen, UK

ABSTRACT

Cloud computing has been a great enabler for both the In-
ternet of Things and Big Data. However, as with all new
computing developments, development of the technology is
usually much faster than consideration for, and development
of, solutions for security and privacy. In a previous paper,
we proposed that a unikernel solution could be used to im-
prove security and privacy in a cloud scenario. In this paper,
we outline how we might apply this approach to the Inter-
net of Things, which can demonstrate an improvement over
existing approaches.

CCS Concepts

eInformation systems — Enterprise information sys-
tems;

Keywords

Cloud Security and Privacy; attack surface; compliance

1. INTRODUCTION

The Internet of Things (IoT) has been around for quite
a while, but it was not until cloud computing and big data
arrived that the IoT really started to take off. In 2007,
Gantz et al [13], suggested that global data collection would
double every 18 months, and Cisco noted that the IoT had
really come of age in 2008, as there were now more things
connected to the internet than people [11]. Now, there is no
longer any limitation on what we can do with it. The impor-
tance of this technology should not be underestimated. It
can be used for varied, and immensely important uses such
as: defence, domestic and home automation, eHealth, in-
dustrial control, logistics, retail, security and emergencies,
smart airports, smart agriculture, smart animal farming,
smart cars, smart cities, smart environment, smart meter-
ing, smart parking, smart roads, smart trains, smart trans-
port, smart water, to name but a few.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

UCC ’16 December 6-9, 2016, Shanghai, China
© 2016 ACM. ISBN 978-1-4503-4616-0.
DOI: 10.1145/1235

Andreas Happe
Dept. Digital Safety & Security
Austrian Inst. of Tech. GmbH

Vienna, Austria
bobduncan@abdn.ac.uk andreas.happe@ait.ac.at

Alfred Bratterud
Dept. of Computer Science
Oslo and Akershus University
Oslo, Norway

alfred.bratterud@hioa.no

The general consensus on predictions for the number of
connected devices by 2020 is reckoned to be between 20 bil-
lion to 35 billion [14][1][26][10][24], connected devices. Those
devices will certainly be capable of generating a huge volume
of data. We can look at the IoT as a potentially huge pro-
ducer of data, which is why the use of cloud is so important.
As a first stage in the flow of data, the Cloud/BigData can
be seen as the data consumer, although, ultimately, there
will usually be an onward flow of this data for other com-
mercial reasons. The data producers then are “mobile” and
geographically dispersed, and the first stage data consumer,
the cloud, can also be geographically dispersed, meaning
the enterprise could benefit from the consumers being near
to the data producers in order to minimise transport load.
Dead capacity is not sustainable, which might lead to some
kind of on-demand computing that should be co-located near
the consumers.

But, of course, while this all sounds really useful and in-
teresting, it also raises other issues and concerns. It is well
known that IoT technology is particularly vulnerable to at-
tack, and the IoT and Big Data is no exception. Indeed, this
area is poorly regulated, with few proper standards yet in
place, which suggests it might be potentially more vulnera-
ble than existing systems which have been around for some
time now. Issues of security, privacy and accountability have
yet to be properly resolved.

Traditionally a very important part of the enterprise ar-
chitecture was the central enterprise firewall through which
all traffic was routed. This was a fundamental element of
achieving enterprise security, which evolved in the late 80’s
[19]. The adoption of distributed computing architecture
would lead to improvements in the central firewall to pro-
vide a distributed firewall. Subsequent adoption of mobile
technology, followed by cloud technology, started to affect
the efficacy of this approach, and many enterprises have yet
to adequately adapt their systems to the additional pres-
sures these new technologies bring to the goal of achieving
good enterprise security. But now, with IoT devices the pos-
sible routes in to the enterprise’s network have exploded.
If we need cloud computing resources for scale-out, we are
fully outside the typical enterprise firewall. Fog comput-
ing makes this even tougher, as now additional processing
is added outside of the traditional security scope. As [28],
suggests, technology tends to get used in unexpected ways.
This makes enterprise security tough, as these unintended
ways are often not forseen. In addition, IoT devices are
too resource-constrained to employ traditional security tools
(virus scanner, etc.), so that leaves the enterprise network



far more exposed to attack.

It is this concern that drives us to consider how the use of
a unikernel solution might be deployed to improve the sta-
tus quo. In this paper, we outline how we might approach
developing a solution to these issues and concerns. In Sec-
tion 2, we look at some typical deployment architectures
currently in use, and note how they fail to address the se-
curity and privacy challenges we will mention in Section 3,
where we outline the security and privacy challenges faced by
any enterprise wishing to safely use this new technology. In
Section 4, we outline the unikernel angle for both client and
server. In Section 5, we talk about some of the challenges,
problems and limitations IoT brings to the enterprise, and
in Section 6, we discuss our conclusions.

2. SOME EXAMPLES OF CURRENTLY DE-
PLOYED IOT ARCHITECTURE

There are a number of goals for the IoT, namely cost-
effectiveness, efficiency, quality of service, mobility, man-
ageability and of course security and privacy. The first of
these, has lead to a proliferation of cheap sensor-like devices
being used. While they are certainly cheap, they are also
generally dumb, in the sense that they have very limited
resources, meaning it is unlikely that these devices can be
made to be smart. They merely collect data, which has to
be passed on down the line. In this context, efficiency refers
to low power consumption, since it may be necessary to rely
on battery or solar power. Quality of service in this context
means the ability to prioritise data streams from different
devices. Mobility, obviously refers to the fact that some
devices need to be mobile, where these devices move physi-
cally from one place to another. Manageability means there
needs to be some way of intelligently managing the archi-
tecture, including both centralised and distributed control.
Security and privacy are vital aspects of the architecture to
ensure the archtecture is both resilient to attack, and able
to withstand leakage of personally identifiable data.

However, since there are no agreed standards currently in
existence, and there are many different ways of approaching
this task, we need to consider each deployment very carefully
based on the architecture specified, or actually in use. This
makes the task of ensuring the security and privacy aspects
of the architecture very difficult indeed.

The overall IoT architecture consists of uncountable mini-
mal devices — distributed throughout the world — exchang-
ing data with fewer centralized servers. Given the amount
of data produced, the impact upon communication and pro-
cessing infrastructure is very high. Another problem is the
potentially high cyclic traffic pattern that creates short-term
traffic and utilization spikes.

The local devices themselves are resource-constrained. Nei-
ther processing nor memory is abundant. Compared to a
desktop-class computer, updating an IoT device is tough.
As there is no user interface, a botched update may shut
down the device. Special care must be taken to make sure
that even a corrupt update can be recovered from. In addi-
tion, all means that prevent updates in the first place, e.g.,
hardened systems that reduce the amount of needed secu-
rity updates, are important investments in an enterprise’s
long-term business prospects.

Many of these devices use different hardware architectures
and configurations, and often software needs to be written on

a per-device basis, meaning there is often little consistency
from one device to another.

On the server-side, the cloud, with its limitless scaling ca-
pabilities, would solve the dynamic processing requirements.
To allow for scale-out, new paradigms have to be embraced.
In the database world, the rise of NoSQL databases was
partially backed by their good scaling capabilities — even
accepting their reduced consistency models when compared
to traditional SQL databases.

The natural way of reducing transported data is to com-
pact and reduce the data on-site. To achieve this, parts
of the server-side code must be moved towards local pro-
cessing stations. We assume that those are more powerful
than sensors, but powerless compared to full cloud offerings.
When data is processed on-site, special attention must be
paid to the processing operation’s integrity itself. If the on-
site processing can modify all incoming data, it will be a
prime target for offensive security attackers.

It is very important to realise that medical and power grid
data will become a fundamental cornerstone of future soci-
eties. It will therefore be extremely important to introduce
some form of verifiable computing in order to safeguard this
vital data. This would allow the final data-centre to verify
that the computations carried out along the data trail by
other machines have been performed correctly.

Other concerns arise for so called Smart Home setups. Fu-
ture homes will be augmented with a multitude of sensors
and control mechanisms, which in addition to forwarding
data to the cloud, might be controlled by the latter. Cur-
rent setups are, for example, feedback-loops between window
sensors and the heating system/climate control, automatic
door openers as well as integrated kitchen systems where
pans can automatically control stoves and ovens. All of
which might be interesting for a malicious actor that can
utilize this to create additional costs (energy consumption)
or open otherwise closed doors. Infrastructure-wise we see
a combination of dumb sensors, a local Smart Home hub
with limited processing capabilities and a direct uplink to
the cloud for remote control capabilities. This Smart Hub
will also be a prime target for attackers as it is in scope of
the home user and thus seldom maintained by professional
IT administration.

The Smart Home area can be seen as the natural com-
mercial extension of the original Industry 4.0 area. Here
sensors are integrated into the manufacturing process to im-
prove efficiency. The direct monetary incentive has lead to
fast adoption within this area. Too fast, if you look at the
various security incidents against industrial control systems.
This area is also very vulnerable as traditional systems as-
sume the local network to be secure, i.e. there are very few
defensive security mechanisms in place. Now those areas
are accessible through a network, maybe even the Internet.
As already seen, those networks are a target for professional
advanced persistent threat (APT) groups as well as for state-
owned actors. What could go wrong?

An area especially sensitive is Smart Health. It ranges
from local on-site medical monitoring to the highly sensitive
network within hospitals. Especially after the EU’s General
Data Protection Act (GDPA) with its increased fines for per-
sonal data breaches, industry cannot ignore this area. Doc-
umented attacks (ransom-ware) as well as penetration-tests
within prototype test hospital settings have shown the cur-
rent low security level that medical devices currently have.



IoT will increase the amount of devices used within this
setting, if they are not secure data leaks or invasive mali-
cious attacks against medical devices (such as pacemakers
and drug dispensers) will become more common.

All of those scenarios have the common theme of massive
deployments. While the initial roll-out will be highly driven
(and sometimes performed) by customers buying new de-
vices, subsequent update needs might introduce new prob-
lems. Companies producing the IoT devices (e.g., Smart
Light Bulbs, Heat Sensors) need ways of updating the mil-
lions of deployed devices. Compared to software, this has
an additional problem: if a security sensor mandates the
update of a million of loosely connected devices, and lives
are in danger, there is a much higher level of urgency.

3. 10T SECURITY AND PRIVACY CHAL-
LENGES

For any enterprise, there are many security challenges
which must first be addressed. For any application using
cloud, [9], have developed a useful list of ten key security
goals that must be addressed, which we see in Table 1 be-
low.

-5pt

Number Key Security Challenges
The definition of security goals
Compliance with standards
Audit issues

Management approach
Technical complexity of cloud
Lack of responsibility and accountability
Measurement and monitoring
Management attitude to security
Security culture in the company
The threat environment

S © 0000 Ut W

Table 1: Duncan and Whittington
10 Key Security Issues — 2016 [9]

However, when we want to incorporate IoT into a cloud
setting, we must do more. For this purpose, we can start by
looking at the work done by the Open Web Application Se-
curity Project (OWASP), who publish a number of relevant
lists we can use to help us deal with the additional issues
we will face in using the IoT. The first of these is their top
ten list of web security vulnerabilities , which they publish
every three years. These lists are derived from real world
intrusions reported globally, which are reflective of what the
attackers are actually doing successfully. Since these are live
and successful attacks, it makes sound sense to close these
loopholes first. The latest list is provided in the table below.

This list is based on the result of analysis of successful se-
curity breaches across the globe, which seeks to highlight the
worst, areas of impact of weaknesses in web based comput-
ing systems. However, thanks to the innovative techniques
in use for IoT, that is still not enough. OWASP now pro-
duce a list of the worst 10 vulnerabilities in the use of mobile
technology, which we show in the list below.

But, of course, it is not quite as simple as that. The IoT
mechanics extend beyond traditional web technology and
mobile technology. In 2014, OWASP developed a provisional
top ten list of [oT vulnerabilities, which we outline below in
Table 4.

2013 Code Threat
Al Injection Attacks
A2 Broken Authentication and Session Management
A3 Cross Site Scripting (XSS)
A4 Insecure Direct Object References
A5 Security Misconfiguration
A6 Sensitive Data Exposure
AT Missing Function Level Access Control
A8 Cross Site Request Forgery (CSRF)
A9 Using Components with Known Vulnerabilities
Al0 Unvalidated Redirects and Forwards

Table 2: OWASP Top Ten Web
Vulnerabilities — 2013 [20]

2013 Code Threat
M1 Insecure Data Storage
M2 Weak Server Side Controls
M3 Insufficient Transport Layer Protection
M4 Client Side Injection
Mb Poor Authorization and Authentication
M6 Improper Session Handling
M7 Security Decisions via Untrusted Inputs
M8 Side Channel Data Leakage
M9 Broken Cryptography
M10 Sensitive Information Disclosure

Table 3: OWASP Top Ten Mobile
Vulnerabilities — 2013 [20]

An important point to bear in mind is that the above ta-
ble represents just the OWASP top ten vulnerability list.
OWASP are currently working on a full list of 130 possible
IoT vulnerabilities which might need to be taken into ac-
count. While all this at first might seem like a huge task,
OWASP do provide good suggestions as to how to mitigate
these issues.

And the above just covers security issues. We also have to
consider the challenges of privacy issues. With the increase
in punitive legislation and regulation surrounding issues of
privacy, we must necessarily concern ourselves with provid-
ing the ability to ensure the goal of privacy can be achieved.
The good news is that if we can achieve a high level of se-
curity, then it will be much easier to achieve a good level
of privacy [8]. Good privacy depends on having a high level
of security. We can have security without privacy, but we
can’t have privacy without security.

While the IoT has progressed significantly in technical
terms in recent years, it has very much done so at the ex-
pense of security and privacy, for example accessing utility
companes, including nuclear in the US [31], damage caused
to German steel mill by hackers [32], drug dispensing ma-
chines hacked in US [27], plane taken over by security expert
mid-air [5], and a hack that switched off smart fridges if it de-
tected ice cream [3]. While enterprises often might not care
too much about these issues, they should. If nothing else,
legislators and regulators are unlikely to forget, and will be
keen to pursue enterprises for security and privacy breaches.
In previous years, it was often the case that legislators and
regulators had little teeth, but consider how punitive fines
have become in recent years following the banking crisis in
2008. In the UK in 2014, the Financial Conduct Authority



2014 Code Threat
I1 Insecure Web Interface
12 Insufficient Authentication/Authorization
13 Insecure Network Services
14 Lack of Transport Encryption
15 Privacy Concerns
16 Insecure Cloud Interface
I7 Insecure Mobile Interface
18 Insufficient Security Configure-ability
19 Insecure Software/Firmware
110 Poor Physical Security

Table 4: OWASP Top Ten IoT
Vulnerabilities — 2014 [21]

(FCA) fined a total of £1,427,943,800 [12], during the year.

4. THE UNIKERNEL ANGLE

Why use unikernels for the IoT [22]? Unikernels are uniquely

suited to benefit all areas (sensor, middleman, servers) within
the IoT chain. They allow for unified development utilizing
the same software infrastructure for all layers. This may
sound petty, but who would have thought JavaScript could
be used on servers (think node.js) a couple of years ago?

4.1 On the Client

Unikernels are a form of virtualisation and thus offer all of
its benefits: they provide a unified interface to diverse hard-
ware platforms to application developers. This allows the
latter to focus on application development. They allow the
ability to mask changes of the underlying hardware platform
behind the hypervisor. This also allows for application code
to be reused between different hardware revisions. In addi-
tion, system and application development is often performed
by disjunct groups within an enterprise. Using a unikernel
decouples both groups and thus allows parallel-alized de-
velopment. Application developers can utilize a virtualized
testing environment on their workstations during develop-
ment, but can assume that the same environment will be
available within the production environment.

Unikernels can produce leaner virtual machines when com-
pared to traditional virtualization solutions. This minimal-
ism yields a much reduced attack surface which in turn cre-
ates more secure applications. Using a resource efficient
unikernel such as IncludeOS will minimize the computa-
tional and memory overhead that otherwise would prevent
virtualization from being used. While the small memory
and processing overhead enables the usage of virtualisation
on low-powered IoT devices in the first place, it also aids
higher capacity devices. Lower resource utilization allows
for either better utilization (i.e., running more services on
the same hardware) or higher usage of low power modes
(thus reducing energy consumption). Both increase the sus-
tainability of IoT deployments.

Another feature that is in high demand by embedded sys-
tems is atomic updates: a system supporting atomic updates
either installs a system update or reverts back to a known
(working) system state. For example, Google’s Chrome OS
[16], achieves this by using two system partitions. A new
system upgrade is installed onto the currently unused parti-
tion. On the next boot the newly installed system is used,
but the old system is pre-selected as a backup boot option if

the initial boot does not work. If the new system boots, the
new system is marked as the new default operating system
and the (now) old partition will be used for the next system
upgrade. This allows high resilience in the face of potentially
disrupting Chrome OS updates. A similar scheme is set to
be introduced for the upcoming Android Version 7. This
scheme would be greatly aided by unikernels: they already
provide a clear separation of data and control logic. A sys-
tem upgrade would thus start a new unikernel and forward
new requests to it. Of course, if the underlying hypervisor
has to be upgraded (which due to its minimal size should be
a very rare event) the whole system might incorporate the
dual boot-partition approach.

4.2 On the Server

Given the large estimated number of IoT devices to be
deployed in the near future, computational demand on data
centres (or nowadays the cloud) can be immense. While IoT
amplifies the amount of incoming traffic, it has some char-
acteristics that should favour unikernel-like architectures.

For one, our envisioned unikernels utilize a non-mutable
state and are event-based. This combination allows for sim-
plified scale-out, i.e. it allows for dynamically starting more
unikernels if incoming requests demand it. We do believe
that many processing steps during an loT dataflow’s lifetime
will be parallelizable, e.g. data collected from one household
will not interact with data gathered by a different household
from another continent during the initial processing steps,
or possibly never at all. As they do not interact, there is no
chance of side effects, thus the incoming data can instantly
be processed by a newly spawned unikernel.

Two recent trends in cloud computing are cloudlets and
fog computing. The former describes a small-scale data cen-
tre located near the internet’s edge (i.e. co-located near
many sensors and acting as upstream for the incoming IoT
sensors) while the latter describes the overall technique of
placing storage or computational capabilities near the net-
work edges. To allow for easy usage of this paradigm, a
unified execution environment is needed: when the same
environment is employed, application code can easily be
moved from the cloud towards the networks’ edge, i.e. into
the cloudlets. Unikernels offer closure over the application’s
code, so the same unikernel can be deployed at a cloudlet
or within a central data centre. Of course, the unikernel
itself might place requirements upon external facilities such
as storage, which would need to be provided by the current
execution environment. A consumer-grade version of this
trend can already be seen: many high-powered NAS devices
allow for local deployment of virtual machines or contain-
ers. This moves functionality from the cloud to a smallest-
scale local processing environment. A good use-case for this
would be Smart Homes: here a local NAS can perform most
of the computations and then forward the compressed data
towards a central data centre. In addition, this local pre-
processing can apply various cryptographic means to im-
prove the uploaded data’s integrity or confidentiality.

S. CHALLENGES, PROBLEMS, LIMITATIONS

5.1 Unikernels are Only a Part of the Solution

While they offer benefits for deployment and security —
mostly through their compactness as well as their closure
guarantees — large-scale deployments place high stress on



infrastructure for handling the roll-out, monitoring and log-
ging. The software for this infrastructure has yet to be writ-
ten.

5.2 Production-Level Debugging

First, in a perfect world, no production-level debugging
would ever occur, as all bugs would be detected and fixed
within the development or staging environment. But reality
begs to differ. A common complaint is that unikernels lack
debugging facilities: there is just no shell to log-in and vi-
sualize the environment. The more root dependent the user
becomes, the more frequent this complaint arises. Uniker-
nels (as well as Function-as-a-Service architectures) target
DevOp outfits where development and administration has
been integrated. The person in charge of debugging is a
software developer herself and thus can utilize developer-
centric debugging facilities. If debugging is to be performed
by developers, groundwork is needed: there must be infras-
tructure in place that allows securely connecting the debug-
ging tools to the running unikernel within the virtual ma-
chine. While this might be feasible for unikernels running
within an enterprise’s private cloud, the security impact of
connecting to deployed IoT devices is massive. We believe
that this infrastructure will remove most of the debugging
complaints.

5.3 Impact upon Software Development

We assume a unikernel to have a single execution flow, i.e.
to have a single execution thread or process, as well as to
offer no mutable state within the unikernel itself [2]. This
prevents quick adoption of many existing software packages.
Where others see limitations, we see opportunities. The sin-
gle execution-flow paradigm almost enforces the usage of an
event-based software programming style, i.e. all process-
ing is triggered by internal (e.g., timers) or external (e.g.,
new incoming data) events. If no new event is available
or processed, the device can safely enter a deeper power-
saving state. Minimizing energy consumption is paramount
for IoT devices so we assume that this is a much wanted fea-
ture. On the server-side this will reduce the overall power-
consumption: while not being an essential requirement, as
for IoT devices, the reduced power bill will be a nice benefit
for enterprises.

This stateless-ness allows us to start new unikernels on-
demand. Together with an event-driven architecture and
rapid boot-up times, this allows us to minimize the number
of running unikernels. This reduces the memory consump-
tion (thus energy impact) of deployed services. Upgrading
a unikernel also becomes easier: while the old version of
unikernels are still processing their current request, new re-
quests will be forwarded to the new version of the unikernel.

This feature also allows for improved resilience in the face
of errors. When functionality is split up between multiple
unikernels, faults are automatically contained within a sin-
gle executing unikernel [17]. Together with monitoring and
automatic life-cycle management, this leads to error-resilient
services that have limited self-healing capabilities. Contrast
this with monolithic applications where often the whole ap-
plication — or even worse, the application server containing
multiple applications — has to be restarted in the case of
errors. Due to resource constraints, we are initially limiting
resilience research to server-side unikernels, but the same
techniques can be applied on IoT devices as well. Arguably,

self-healing capabilities are of even higher importance on
devices with only limited means of user interaction.

5.4 Virtualization in the Embedded Space

As we already stated in Section 1, there are no standards
when it comes to components for the IoT. This means there
is a huge range of different architectures vying for a place
in this potentially massive market space. Obviously, from
a technical standpoint, greater flexibility and power can be
obtained through good use of virtualization. Virtualisation
is not new, and has been around since 1973 [23]. Bearing
in mind that dumb sensors do not have enough resources or
lack hardware support for virtualisation (or at least Linux-
based virtualisation), we will have a quick look at some of
the most popular hardware in use in this space.

ARM [15], presented the ARM capabilities at this work-
shop in 2009. ARM is one of the most used platforms in
the IoT. and has virtualization extensions. Columbia Uni-
versity have developed KVM/ARM, an Open-Source ARM
Virtualization System [4]. Dall and Nieh [6], have written
an article on this work for LWN.net, and for a conference [7].
There has been paravirtualization support in ARM Coretex
A8 since 2006, and ARM Coretex A9 since 2008, with full
virtualization since approx. 2009. Virtualisation is also in
Linux Kernel 3.8. There are also MMU-less ARMs, although
it unlikely that these could be used, unless we were to forfeit
the unikernel’s protection.

Most smart devices can generally handle virtualization —
devices such as smart phones, smart automotive systems,
video boxes, play stations, and smart TVs too, although this
may not necessarily be the case for small embedded compo-
nents, such as wear-ables, sensors and other IoT compo-
nents. MIPS also supports virtualization [18][30]. Some In-
tel Atom processors support virtualization (the atom range
is huge). However, the low-power Intel Quark has no sup-
port for virtualization whatsoever. The new Open-Source
RISC-V architecture [25], also supports virtualization.

As we can see, many of the current IoT systems in use
do have the capability to handle virtualization. For exam-
ple most high-powered NAS systems now have virtualization
(and app) support. Thus we could potentially utilize NAS or
other low-powered devices (which are mostly ARM, MIPS
or x86) to aggregate data on-site and then transport the
reduced data to the “real” cloud.

At the moment, we should carefully consider the current
state of security and privacy in a massively connected world.
Now we can really see that “big brother” is watching you.
Not just through the use of massive CCTV networks, but
also through IoT enabled devices which will become embed-
ded in every smart city. It is estimated that in smart cities of
the future there will be approximately 5000 sensors watching
as you move through the city at all times. What could possi-
bly go wrong? How much personal information could leak as
you walk? How much of your money could NFC technology
in the wrong hands steal from you, without you being aware
of it happening? Do you trust the current technology? We
can read about more of these issues in [29].

6. CONCLUSIONS

We have taken a look at the exciting new paradigm of the
IoT. While the possibilities are indeed exciting, the conse-
quences of getting it wrong are likely to be catastrophic. We
cannot afford to carry blindly on. Instead, we must recognise



that if the issues we have outlined on security and privacy are
not tackled properly, and soon, we will all be sleep-walking
into a disaster. However, if we realise that we need to take
some appropriate actions now, then we will be much better
placed to feel comfortable in living in an IoT world. There
are considerable potential benefits for everyone to be offered
from using our unikernel based approach. While we see se-
curity and confidentiality of data as paramount — and given
the EU’s GDPA, we believe the EU agrees — security and
privacy do not directly translate into a monetary benefit for
companies and thus are seldom enough for change to gain
traction. To better convince enterprises, we offer the added
benefit of increasing developer efficiency. Experienced and
talented developer resources are scarce at hand, so making
the most of it is within an enterprise’s best interest. The
broad application of a virtualisation solution allows to bet-
ter reuse existing knowledge and tools as developers gain a
virtual long-term environment that they can work in.

Virtualisation in combination with the special state-less
nature of many unikernels provide a solution for short-term
processing spikes. Processing can be scaled-out to in-company
or public clouds by deploying unikernels—as they do not re-
quire external dependencies and do not contain state, de-
ployments are simplified. After their usage they can be dis-
carded (no state also means that no compromising informa-
tion is stored at the cloud provider). In case of sensitive
information special means, e.g., homomorphic encryption or
verifiable computing technologies need to be employed to
protect data integrity or confidentiality.

Unikernels offer a high energy efficiency. This allows com-
panies to claim higher sustainability for their solutions while
reducing their energy costs. We view our proposed solution
as taking a smart approach to solving smart technology is-
sues. It does not have to be exorbitantly expensive to do
what we need, but by taking a simple approach, sensibly ap-
plied, we can all have much better faith in the consequences
of using this technology (as well as having the comfort of be-
ing able to walk through a smart city without having your
bank account emptied.

7. REFERENCES

[1] Bllntelligence. Here’s how the Internet of Things will
explode by 2020, 2016.

[2] A. Bratterud, A. Happe, and B. Duncan. Enhancing
Cloud Security and Privacy: The Unikernel Solution.
In Submitt. to CloudComputing 2017, pages 1-8, 2017.

[3] CBR. IoT security breach forces kitchen devices to
reject junk food, 2015.

[4] Columbia. KVM/ARM: an Open-Source ARM
Virtualization System, 2016.

[5] DailyMail. Security expert who ’hacked a commercial
flight and made it fly sideways’ bragged that he also
hacked the International Space Station, 2015.

[6] C. Dall and J. Nieh. Supporting KVM on the ARM
Architecture, 2013.

[7] C. Dall and J. Nieh. KVM/ARM: the design and
implementation of the linux ARM hypervisor. In ACM
SIGPLAN Not., volume 49, pages 333-348. ACM,
2014.

[8] B. Duncan, A. Bratterud, and A. Happe. Enhancing
Cloud Security and Privacy: Time for a New
Approach? In INTECH 2016, pages 1-6, Dublin, 2016.

[9] B. Duncan and M. Whittington. Enhancing Cloud
Security and Privacy: The Power and the Weakness of
the Audit Trail. In Cloud Comput. 2016, pages
125-130, Rome, 2016.

[10] EMC. Discover the Digital Universe of Opportunities:
Rich Data and the Increasing Value of the Internet of
Things, 2014.

[11] D. Evans. The Internet of Things: How the Next
Evolution of the Internet is Changing Everything.
Technical report, Cisco, 2011.

[12] FCA. Fines Table - 2014, 2014.

[13] J. F. Gantz, D. Reinsel, C. Chute, W. Schlichting,

J. McArthur, S. Minton, I. Xheneti, A. Toncheva, and
A. Manfrediz. The Expanding Digital Universe: A
Forecast of Worldwide Information Growth Through
2010. In Eztern. Publ. IDC (Analyse Futur. Inf. Data,
pages 1-21. IDC, 2007.

[14] Gartner. Gartner Says 6.4 Billion Connected "Things”
Will Be in Use in 2016, Up 30 Percent From 2015,
2015.

[15] J. Goodacre. No Title. In Virtualization Euro Work.
2009, 2009.

[16] Google. Google Chrome OS, 2015.

[17] A. Happe, B. Duncan, and A. Bratterud. An
Architectural Framework for Secure, Large Unikernel
Cloud Systems. In Submitt. to Closer/Complexis 2017,
pages 1-8, 2016.

[18] Imgtech. MIPS Virtualization, 2016.

[19] K. Ingham and S. Forrest. A history and survey of
network firewalls. Univ. New Mezx. Tech. Rep, 2002.

[20] OWASP. OWASP Top Ten Vulnerabilities 2013, 2013.

[21] OWASP. OWASP Top 10 IoT Vulnerabilities (2014),
2014.

[22] R. Pavlicek. Unikernel-based microservices will
transform the cloud for the IoT age, 2016.

[23] G. J. Popek and R. P. Goldberg. Formal Requirements
for Virtualizable Third Generation Architectures.
ACM SIGOPS Oper. Syst. Rev., 7(4):112, 1973.

[24] J. Research. aA¥Internet of Things’ Connected
Devices to Almost Triple to over 38 Billion Units by
2020, 2016.

[25] Riskv.org. Open-Source RISK V Architecture, 2016.

[26] G. Sachs. The Internet of Things: Making sense of the
next mega-trend. Technical report, Goldman Sachs,
2014.

[27] SecurityWeek. FDA Issues Alert Over Vulnerable
Hospira Drug Pumps, 2015.

[28] T. Seo. Making Sense of Enterprise Security, 2016.

[29] S. Sharma, V. Chang, U. S. Tim, J. Wong, and
S. Gadia. Cloud-based Emerging Services Systems.
Int. J. Inf. Manage., pages 1-19, 2016.

[30] I. Technologies. The MIPS Architecture and
Virtualization, 2016.

[31] U. Today. Hackers Breach US Dept of Energy
Copmputers 150 Times in 4 Years, Including 19
Nuclear Breaches, 2015.

[32] Wired. German Steel Mill HackedCausing Massive
Damage, 2015.



