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Abstract—In previous work, we proposed how a new approach
using unikernels might be appropriate to help resolve the problem
of cloud security and privacy, in which we identified 10 key
management problems which needed to be addressed. In this
paper, we outline the technical details of such an approach,
identifying how this new approach can better address the issues
involved.

Index Terms—Cloud security and privacy; management con-
trol; compliance; complexity

I. INTRODUCTION

In our previous paper in this series [1], we provided a high
level account of ten security issues which management need
to take account of when using cloud computing systems, and
suggested how unikernel-based systems might address many
of those issues, as we see in TABLE I below.

Issue Description Helped by:
1 The definition of

security goals
Mgt and Unikernels

2 Compliance with
standards

Mgt and Unikernels

3 Audit issues Mgt and Unikernels
4 Management

approach
Mgt and Unikernels

5 Technical
complexity of
cloud

Unikernels

6 Lack of responsi-
bility and account-
ability

Mgt/CSPs

7 Measurement and
monitoring

Unikernels

8 Management atti-
tude to security

Mgt

9 Security culture in
the company

Mgt

10 The threat environ-
ment

Unikernels can help to
enforce good design / ar-
chitecture decisions

TABLE I: Items addressed by Unikernels c©2016 [1]

While these security issues can be successfully addressed
by other means, the reality, as evidenced by the recurring
success of attackers, is that many companies are failing to
apply the necessary rigour needed to resolve these issues in
their existing approaches. Year after year, many attacks which
are both simple and relatively inexpensive to defend against,
continue to be exploited.

In this paper we introduce a framework of definitions and
metrics for classifying unikernel systems which we later make
use of in the design, testing and assessment of new unikernel
based system architectures. In Section II, we outline some
necessary definitions and preliminary observations on uniker-
nels, and in Section III we consider 6 security observations
relating to unikernels. The remainder of the paper is organized
as follows: in Section IV, we review the relationship between
unikernels and microkernels; in Section V, we discuss the im-
plications of implementation language choice; in Section VI,
we present well defined properties of unikernel systems; in
Section VII, we outline our proposed solution. In Section VIII,
we show how our proposed approach will address those key
issues identified in TABLE: I. In Section IX, we consider some
initial thoughts on attack vectors; and in Section X, we discuss
our conclusions.

II. A PRECURSOR TO FORMAL WORK ON UNIKERNELS

Modern unikernel research, particularly concerning deploy-
ment in cloud, is still in its infancy and the literature currently
available does not include much in the way of theoretical work
or precise definitions, but rather takes a pragmatic approach
[2]–[4]. One popularized definition states that “Unikernels are
specialised, single-address-space machine images constructed
by using library operating systems; and that Unikernels pro-
vide many benefits compared to a traditional OS, including
improved security, smaller footprints, more optimisation and
faster boot times” [5]. Without further qualification, directly
associating unikernels with security benefits can be hazardous.
In particular, it is not at all clear what “machine images” or
“operating system libraries” are, nor what it means to construct
them, and hence it is unclear precisely how unikernels can be
said to be more secure. It is our view that stricter definitions
are both necessary and achievable. We propose a set of
working definitions intended to make the following exposition



more precise, and to serve as a theoretical basis of a framework
for unikernel based cloud computing.

To this end we can go back over four decades to early work
on virtualization of mainframes. Early single address space
operating systems such as Mungi or Opal and many others
do not seem to have much traction today. In 1995 [6], there
was some early work on the Exokernel system, with some
updating over the years, but little widespread use. Microsoft
work on library operating systems, Drawbridge [7], saw little
use other than for research, although it later evolved into the
Haven system [8], which was intended for use in the Azure
cloud.

Definition II.1. Popek-Goldberg virtual machine. An envi-
ronment created by the virtual machine monitor, which is
functionally equivalent to the physical machine on a given
hardware platform, as defined in [9]

Popek and Goldberg provide formal definitions of both
Virtual Machine Monitor and Virtual Machine, which form
the most well known, if not the only, formally defined virtu-
alization platform which also directly corresponds to modern
hardware and nomenclature. An x86 Popek-Goldberg virtual
machine is a virtual machine running under x86 Popek-
Goldberg compliant hardware virtualization, e.g. x86 hardware
with vt-x extensions.

In order to give a precise definition of unikernels, we
need to define their constituent parts. Our intention is not
to provide definitions that encompass all the complexities
or functionalities of unikernels, but rather the opposite; just
enough to get a precise idea of what unikernels are and what
they are not.

Definition II.2. Compiled program object. Symbol. An n-
tuple of machine instructions from a Turing complete instruc-
tion set, e.g. Intel x86, or an arbitrary sequence of bytes b, i.e.
0 >= b < 28.

Definition II.3. Software library, symbol. A Software li-
brary is taken to be a collection of compiled program
objects, {O1, ..., Om} and arbitrary byte-sequences (e.g.
data) {Dm+1, ..., Dn} providing symbol resolutions, i.e. link-
able objects, each corresponding to a symbol in the set
{S1, ..., Sm, Sm+1, ..., Sn}

The intuition here is to capture the idea of a library of
compiled code, where functions and data are represented as
binary objects in e.g. libos.so, libos.a, libos.dll
etc., where functions and static data can be accessed via
symbols available to a linker. For the purposes of this paper
we assume the process of linking and symbol resolution are
given and well defined.

Definition II.4. Software service. Objects, and optionally
symbols, from a software library, with the addition of an entry
point object O0 corresponding to a symbol S0 (e.g._start)
that may or may not be present in the service, providing the
compiled code necessary for a program to be executable on a
given hardware architecture.

Compiling an executable binary typically includes defining
the entry point, e.g. main in ISO C, from where to start
executing functions provided from a library. Compilers such
as gcc will typically pre-pend some additional functionality
through e.g. the _start-symbol, mapped to code for initializ-
ing the C-runtime, including calling global constructors, zero-
initializing the .bss-segment etc. The symbols are required
during link-time but can later be stripped out when they are
mapped to memory addresses relative to the binary.

We can now give an operational definition of a library
operating system. The term has held different meanings [2],
[10] and we do not intend the following to be canonical, but
merely one that will suffice to precisely define a unikernel for
the purposes of our framework.

Definition II.5. Library operating system. For a software
service SW where the objects {O0, ..., On} form the set of
objects necessary and sufficient for SW to run on a given
hardware platform, a library operating system is a software
library that can provide {O0, ..., On}

It is implied in this definition that a library operating system
provides all the objects necessary to form a fully functional
program, independent of any other software present on a sys-
tem, except that which may or may not be presented through
an instruction level interface, e.g. software that responds to a
trap on the Virtual Machine Monitor in the Popek-Goldberg
model.

1) Definition of a unikernel: In the context of virtual
machines and cloud computing, it makes sense to describe the
whole virtual machine as a unikernel [2], as there is in fact no
classical boundary between kernel- and user space, and also
because any combination of objects that can be pulled from the
library operating system individually can be combined with
a piece of software to form a unique whole. This piece of
completely linked software will have full access to hardware
on the same level as a classic kernel.

In the context of classical operating system kernels, how-
ever, the library operating system designed to produce uniker-
nels may also be called a unikernel [11] in reference to
“microkernel”, “nanokernel”, “monolithic kernel” etc. It could
be argued that if all the contents of a virtual machine were to
be considered a unikernel, there wouldn’t really be any point
in using the word “kernel”.

The following definiton is intended to be sufficiently flexible
to allow both interpretations.

Definition II.6. Unikernel. Given a library operating system
OS, a unikernel U is defined as U ⊆ OS such that U is
sufficent and necessary to provide complete linkage to some
service S for a given hardware platform.

Using an inclusive subset allows both the whole library
operating system and any subset to be called a unikernel.

Definition II.7. Unikernel machine image A software service
SW ∪ U where U is the unikernel for SW , they both share
the same address space, and with the addition of any facilities



necessary to start SW on a given well-defined virtualization
platform e.g. a bootloader in the case of an x86 Popek-
Goldberg virtual machine.

Definition II.8. Popek-Goldberg unikernel. A Popek-
Goldberg virtual machine initialized with a unikernel machine
image.

III. SIX SECURITY OBSERVATIONS IN UNIKERNEL-BASED
SYSTEMS

We have identified 6 security observations which are exhib-
ited by unikernel systems:

• Choice of service isolation mechanism;
• The concept of reduced attack surface;
• The use of a single address space, shared between service

and kernel;
• No shell by default, and the impact on debugging and

forensics;
• Micro services architecture and immutable infrastructure;
• Single thread by default.

A. Choice of service isolation mechanism

In the previous paper in this series, the argument was
made for why classical virtualization is the preferred platform
for secure cloud computing. While many alternatives exist,
which are both practical and widely trusted, one cannot reason
precisely about their security properties unless they are well
defined. In this paper we make no judgements about their
usefulness, but merely note that classical virtualization has had
a precise foundation since 1974. We believe that the lack of
similar models for other modes of virtualization is due to the
fact that Popek-Goldberg virtualization exists at the instruction
level, which is necessarily simple in nature as it must be
implemented in physical circuitry. Other approaches typically
rely on higher level software interfaces, and are thus harder to
define precisely. Despite the simplicity of C, it still proves a
hard nut to crack for the purposes of formal verification [12].

B. Reduced attack surface

Using the above definitions we can now define the attack
surface of a system as the sum of all objects, in bytes.

Definition III.1. Attack surface. The number of bytes in a
system, physically available for reading, writing or executing
as instructions for a given hardware architecture.

Physical protection can be seen as a gray area when it
comes to microcode, firmware and otherwise mutable hard-
ware such as e.g. field-programmable gate arrays (FPGAs).
This definition is intentionally kept general in order to allow
further specifications to refine the meaning of “physically
available” for a given context. The following example can
serve to illustrate how the definition can be used for one of
many purposes.

Building a classic VM using Linux implies simply installing
Linux, and then installing the software on top. Any reduction
in attack surface must be done by removing unneeded software
and kernel modules (e.g drivers). Take TinyCore Linux as an

example of a minimal Linux distribution and assume that it
can produce a machine image of 24MB in size.

Given this intuition, let L be a collection of compiled
program objects for x86, such that L = {O1, ..., O2400}, i.e.
all the objects provided by TinyCore Linux, totalling 24MB
in size, and for simplicity assume the objects are uniformly
sized, 1Kb each. Adding a 1MB software service SW which
require {O0, ..., O1000} to be executable, we get an attack
surface of 25MB, regardless of how many objects of L were
actually needed by SW . Assuming a library operating system
existed that could provide {O0, ..., O1000}, a unikernel would
by definiiton II.6, provide exactly those objects, forming a
2MB sized unikernel machine image. (2MB + 512 bytes of
bootloader code in an x86 hw-VM). Hence the attack surface
of the unikernel VM is reduced by 92%. Conversely, the Linux
VM could be said to add 23/1 * 100 = 2300% of unnecessary
code, which we will refer to as bloat or increased attack
surface depending on context.

C. The use of a single address space

The main objective for postulating a single address space
is to imply single process or singular purpose. In a classic
kernel, the need for multiple address spaces is prompted by the
need to run multiple processes, which must be kept separate
to ensure consistency and integrity among them. A classic
kernel will typically rely on virtual memory implemented in
hardware to ensure process isolation and to provide a con-
trolled virtual to physical address translation. Popek-Goldberg
virtualization relies directly on this general concept without
further extension. Aside from the performance degradation
often seen in nested address translation, we take the view
that introducing virtual memory and multiple processes inside
a Popek-Goldberg virtual machine needlessly complicates an
already complex system. In particular it lays upon the virtual
machine the added responsibility of creating and maintaining
a process-kernel boundary.

Definition III.2. Single address space. For a computer system,
a single address space is defined as an interval of positive
integers [a0, .., an] where n is a power of two, representing the
total addressable memory of a system in a given state, such
that dereferencing any address ∗ax from anywhere inside the
system would access the same physical memory cell.

The intuition is that virtual memory is not employed inside
the system, effectively eliminating the possibility of running
several disjoint processes. We are not making any assumptions
or requirements as to whether or not all addresses are in
fact accessible, e.g. physically present or readable / writable
/ exucutable, merely that they point to the same location if
any. Note that virtual memory can and will be employed on
the virtual machine monitor, to protect one VM from another,
but further nesting of virtual memory would violate the single
address space principle.



D. No shell by default and the impact on debugging and
forensics

One feature of unikernels that immediately makes it seem
very different from classical operating systems is the lack of a
command line interface. This is however a direct consequence
of the fact that classical POSIX-like CLI’s are run as a
separate process (e.g. bash) with the main purpose of starting
other processes. Critics might argue that this makes unikernels
harder to manage and “debug”, as one cannot “log in and see
what’s happened” after an incident, as is the norm for system
administrators. We take the position that this line of argument
is vacuous; running a unikernel rather corresponds to running
a single process with better isolation, and in principle there is
no more need to log in to a unikernel than there is to log in
to e.g. a web server process running in a classical operating
system.

It is worth noting that while unikernels by definition are
a single address space virtual machine, with no concept of
classical processes, a text based CLI can easily be provided
(e.g. IncludeOS does provide an example) — the commands
just wouldn’t start processes, but rather call functions inside
the program. From a security perspective we take the view
that this kind of ad-hoc access to program objects should
be avoided. While symbols are very useful for providing a
stack trace after a crash or for performance profiling, stripping
out symbols pointing to program objects inside a unikernel
would make it much harder for an attacker to find and
execute functions for malicious and unintended purposes. Our
recommendation is that this should be the default mode for
unikernels in production mode.

We take the view that logging is of critical importance for
all systems, in order to provide a proper audit trail. Unikernels
however simply need to provide the logs through other means,
such as over a virtual serial port, or ideally over a secure
networking connection to a trusted audit trail store.

Lastly it is worth mentioning that unikernels in princi-
ple have full control over a contiguous range of memory.
Combined with the fact that a crashed VM by default will
“stay alive” as a process from the VMM perspective, and
not be terminated, this means that in principle the memory
contents of a unikernel could be accessed and inspected from
the VMM after the fact, if desired. Placing the audit trail
logs in a contiguous range of memory could then make it
possible to extract those logs also after a failure in the network
connection or other I/O device normally used for transmitting
the data. Note that this kind of inspection requires complete
trust between the owner of the VM and the VMM (e.g. the
cloud tenant and cloud provider). Our recommendation would
be not to rely on this kind of functionality in public clouds,
unless all sensitive data inside the VM is encrypted and can
be extracted and sent to the tenant without decrypting it.

E. Micro services architecture and immutable infrastructure.

Micro services is a relatively new term founded on the
idea of separating a system into several individual and fully
disjoint services, rather than continuously adding features and

capabilities to an ever growing monolithic program. Being
single threaded by default unikernels naturally imply this kind
of architecture; any need for scaling up beyond the capabilities
of a single CPU should be done by spawning new instances.
While classical VM’s require a lot of resources and impose a
lot of overhead, minimal virtual machines are very lightweight.
As demonstrated in [13] more than 100,000 instances could be
booted on a single physical server and [11] showed that each
virtual machine, including the surrounding process require
much less memory than a single “Hello World” Java program
running directly on the host.

An important feature of unikernels in the context of micro
services is that each unikernel VM is fully self contained.
This also make them immune to breaches in other parts of the
service composition, increasing the resilience of the system as
a whole. Add to this the idea of optimal mutability(defined
below), and each unikernel-based micro service can in turn be
as immutable as is physically possible on a given platform.
In the next paper in this series we expand upon these ideas
and take the position that composing a service out of several
micro services, each as immutable as possible, enables overall
system architects and decision makers to focus on a high level
view of service composition, not having to worry too much
about the security of their constituent parts. We take the view
that this kind of separation of concerns is necessary in order
to achieve scalable yet secure cloud services.

F. Single threaded by default

While the above definitions do not impose any restrictions
on whether or not a unikernel can run several concurrent
threads or multiple CPU cores, it is well known that concur-
rency is a major source of errors accounting for a significant
number of vulnerabilities. IncludeOS and MirageOS are both
examples of unikernels that are single threaded by default. Effi-
ciency is achieved by event based asynchronous interfaces with
no blocking calls. While pre-emptive interrupt handling and
concurrency using shared memory are necessary for certain
workloads, we take the view that single threaded concurrency
free services are by nature less complex and thus less error
prone. It is also well known that threaded applications perform
worse inside virtual machines than single threaded applications
due to the extra layer of context switches necessary to schedule
threads inside the VM as well as outside.

Our recommendation is to keep unikernels single threaded
by default and rather achieve concurrency by adding more
instances, to the extent possible. In a modular library OS
one can add threading and re-entrant versions of libraries
as optional components without causing bloat or increased
complexity to unikernels not requiring concurrency.

IV. RELATIONSHIP TO MICROKERNELS

While there exists a rich fauna of operating system kernel
types, the most well known distinction is between monolithic
kernels and micro kernels. For this reason we’ll briefly explain
how unikernels fit in this spectrum. Microkernel operating
systems are absolutely minimal in the sense that nothing



that doesn’t have to be in the kernel is. However, most
implementations such as the L4 are still A) multi-process;
B) not library operating systems; and C) will typically have
a classical style command line etc., which would make it
almost orthogonal to our purpose as it addresses other issues
(L4 is focussed mainly on fast IPC). That being said, they
have an advantage over classic kernels when it comes to: A)
attack surface (it can run many programs, but it does not have
to); and B) complexity. The simplicity of the microkernel is
what made it possible to do formal verification of the Haskell
implementation of L4 - and that is a major security benefit.

Our position is that unikernels have the potential to in-
corporate the “small and simple” from microkernels, while
still adding new security features — in particular: 1) The
library operating system approach, which guarantees a min-
imal amount of unnecessary code is introduced; 2) the single-
purpose approach; and 3) it is single-threaded by default. This
provides a further means of simplification (parallel program-
ming is notoriously error-prone), while also strongly encour-
aging micro service architecture, which increase resilience of
the system as a whole.

V. CHOICE OF IMPLEMENTATION LANGUAGE

Definition V.1. Independent systems language. A Turing
complete programming language with facilities to utilize the
whole instruction set for a given hardware architecture, includ-
ing writing arbitrary data to arbitrary addresses.

C and C++ are examples of independent systems languages
for most modern hardware architectures e.g. x86: the asm
keyword (i.e. ”inline assembly”) makes the full instruction set
available to the programmer, including privileged instructions
such as hlt,in and out, and the pointer data type and
(unsafe) type conversion allows arbitrary data to be written
to arbitrary addresses. Type safe languages such as javascript,
OCaml, Haskell and Python are not independent systems lan-
guages by design; type safety can be immediately violated by
e.g. type coercion. The requirement for being an independent
systems language is thus incompatible with type safety. To
bridge this incompatibility, unikernels written in type safe
languages must necessarily contain a portion of code written
in an independent systems language. In most cases, such as
with MirageOS, this is done in C.

VI. WELL DEFINED PROPERTIES OF UNIKERNEL SYSTEMS

Based on the previous definitions we can now provide
a framework of well-defined properties of unikernel-based
systems:

• Service isolation:. A well-defined and absolute isolation
mechinanism such as Popek-Goldberg virtualization is
preferable as 0 bytes of code needs to be shared between
services during runtime. Enforcement is performed by
hardware at the instruction level. Following closely is
Xen PVH, which is mostly hardware virtualization, but
some shared code. Paravirtualization shares a thin yet
fairly complex set of software bindings and hardware

is only used for classical process isolation. One way to
quantify this property is the amount of software, in bytes,
shared by each service on the virtual machine monitor.
Microcode / firmware would be a grey area, but that
would be common to all current isolation mechanisms.

• VM Slimness, Bloat and attack surface: For a soft-
ware service SW requiring objects A,B and C to
form a machine image, a system (e.g. unikernel library)
that can produce a virtual machine containing exactly
{SW,A,B,C} without {D,E, F, ...} provides optimal
slimness. Conversely, the amount of code added to the
VM in addition to {SW,A,B,C} adds bloat. As an
example, if {SW,A,B,C} was 10MB in size and an
operating system added 5 MB that would be 50% of bloat.
Linux-based virtual machines would easily be 2000%
bloated for single-purpose virtual machines, e.g. using
a trimmed down Linux micro-core of 24MB used to run
a 1MB service, 96% of the machine image would be
operating system. IncludeOS instances are typically 1 MB
of OS, so if the service could run with IncludeOS that
would be 50/50 software and OS, plus a few percent over-
weight (one typically would not use all the code included,
even if one included only the objects needed, unless the
objects themselves are each absolutely minimal). Given
that 1MB was sufficient to add the required operating
system parts, wrapping it in a Linux VM would literally
make for 2300% of bloat.

• System mutability: To what extent is it possible to
change the system once launched? This is hard to quan-
tify, but we propose the following set of properties as
“optimal immutability” which a system should strive for:
1) All data that can be read-only is
2) All executable code is write-protected
3) Write-able areas of memory (i.e. the heap / working

memory) is not executable
Enforcement of these rules should be implemented at
the lowest level. In IncludeOS, this kind of protection
cannot really be enforced on current platforms. Type-
safe language unikernels, such as Mirage, have a certain
degree of language-level protection, but only in the parts
of the unikernel not written in C. We propose a future
work on hypervisors where we provide an interface for
specifying which parts of the VM that should be read-
only, execute- and read/write (but not execute), when the
system boots. This way, the hypervisor at ring -1 can
set up memory segments inside the VM before it starts,
denying even the VM itself the ability to modify read-
only parts of memory. Having the CPU enforce these
rules will make it useless to inject code into a VM, if
one found a way to do it, as jumping to that code would
trigger a hardware trap.

• Possibility of internal system misuse: To what extent
does the operating system allow parts of the code to be
used for unintended purposes? Having a terminal makes
several commands available for “general purpose” or “ad-



hoc use” of the code embedded into the system. Not
having a terminal, or other similar means of allowing ad-
hoc function calls, greatly reduces or entirely removes
this possibility.

VII. OUR PROPOSED SOLUTION

By default, in the interests of usability, conventional systems
open many more ports than may be needed to run a system.
An open port, especially one which is not needed, is another
route in for the attacker. We also take the position that
the probability of vulnerabilities being present in a system
increases proportionally to the amount of executable code it
contains. Having less executable code inside a given system
will reduce the chances of a breach and also reduce the number
of tools available for an attacker once inside. As Meireles
[14] said in 2007 “... while you can sometimes attack what
you can’t see, you can’t attack what is not there!”. Given the
success with which the threat environment continually attacks
business globally [15]–[19], it is clear that many companies are
falling down on many of the key issues we have highlighted
in Section I. It is also clear that a sophisticated and complex
solution is unlikely to work. Thus we must approach the
problem from a more simple perspective.

A. Service isolation

A fundamental premise for cloud computing is the ability to
share hardware. In private cloud systems, hardware resources
are shared across a potentially large organization, while on
public clouds, hardware is shared globally across multiple
tenants. In both cases, isolating one service from the other
is an absolute requirement.

The simplest mechanism for service isolation is simply
process isolation in classic kernels, relying on hardware
supported virtual memory e.g. provided by the now perva-
sive x86 protected mode. While process isolation has been
used successfully in mainframe setups for decades, access
to terminals with limited user privileges has also been the
context for classical attack vectors such as stack smashing,
root-kits etc., the main problem being that a single kernel is
being shared between several processes and that gaining root
access from one terminal would give access to everything
inside the system. As a result, much work was done in the
sixties and seventies to find ways to completely isolate a
service without sharing a kernel. This work culminated with
the seminal 1974 paper by Gerald J. Popek and Robert P.
Goldberg [20] where they present a formal model describing
the requirements for complete instruction level virtualization,
i.e. hardware virtualization.

While hardware virtualization was in wide use on e.g. IBM
mainframes from that time, it wasn’t until 2005 that the leading
commodity CPU manufacturers, Intel and AMD, introduced
these facilities into their chips. In the meantime, paravirtual-
ization had been re-introduced as a workaround to get virtual
machines on these architectures, notably in [21]. While widely
deployed and depended upon, the Xen project has recently
been evolving its paravirtualization interface towards using

hardware virtualization in e.g. PVH [22] stating that “PVH
means less code and fewer Interfaces in Linux/FreeBSD:
consequently it has a smaller TCB and attack surface, and
thus fewer possible exploits” [23].

Another isolation mechanism is operating system-level vir-
tualization with containers, e.g. LXC popularized in recent
years by Docker, where each container represents a userspace
operating environment for services that all share a kernel.
The mechanism for isolating one container from another is
classical process isolation, augmented with software controls
such as cgroups and Linux namespaces. While containers
do offer less overhead than classic virtual machines, a good
example where containers make a lot of sense would be trusted
in-house clouds, i.e. Google is using containers internally
for most purposes [24]. We take the position that hardware
virtualization is the simplest and most complete mechanism
for service isolation, with the best understood foundations
as formally described by Popek and Goldberg, and that this
should be the preferred isolation mechanism for secure cloud
computing.

B. Why Use Unikernels?

Using hardware virtualization as the preferred isolation
mechanism requires an operating system to be embedded into
the virtual machine. IaaS cloud providers will typically offer
virtual machine images running a classical general purpose
operating system, such as Microsoft Windows and one or
more flavours of Linux, possibly optimized for cloud by e.g.
removing device drivers that are not needed. While specialized
Linux distributions can greatly reduce the memory footprint
and attack surface of a virtual machine, general purpose multi-
process operating systems will, by design, contain a large
amount of functionality that is simply not needed by one single
service. We take the position that virtual machines should be
specialized to a high degree, each forming a single purpose
micro service, to facilitate a resilient and fault tolerant system
architecture, which is also highly scalable.

We argue that the unikernel approach offers the potential
to meet all our needs, while delivering a much reduced attack
surface, yet providing exactly the performance we require. An
added bonus will be the reduced operating footprint, meaning
a more green approach is delivered at the same time.

C. How Does This Compare to a Conventional System?

Looking at what Frederick P. Brooks Jnr. suggests in [25]
“Because ease of use is the purpose, this ratio of function to
conceptual complexity is the ultimate test of system design.
Neither function nor simplicity alone defines a good design”,
we can see where modern software systems are missing
the point. The more complex a system becomes, the more
overhead is introduced, leading to greater complexity and ulti-
mately unnecessary bloat, draining performance, and exposing
vulnerabilities. Conventional cloud systems tend to be over-
complicated, unnecessarily bloated, and therefore expensive
to scale. Unikernels, on the other hand in [5], “Unikernels are
specialized, single-address-space machine images constructed



by using library operating systems”, meaning they are exactly
the right size to carry out their given task — no larger, and
no smaller.

Our proposed approach, using unikernels, limits/enforces
the software architect to use a given pattern (event-based
computing using the single-responsibility-principle, service-
oriented architectures, separation of data and processing, and
modularity) — which is very good from a software design
point of view. We are trying to get people to use “best-of-
breed” patterns, and thus develop better software through this
limitation.

VIII. HOW DOES THIS ADDRESS OUR TEN KEY
CONCERNS?

As we saw in the introduction, we identified 10 key security
issues which have been identified and which need to be ad-
dressed. Of these, we believe our proposed unikernel solution
can help us address seven of these issues, namely:

• 1 The definition of security goals;
• 2 Compliance with standards;
• 3 Audit issues;
• 4 Management approach;
• 5 Technical complexity of cloud;
• 7 Measurement and monitoring;
• 10 The threat environment.

A. The Definition of Security Goals

We propose to build in a number of basic sensible security
goals to the system, so that these goals are included by design.
Naturally, it will be possible to accommodate additional goals,
where the user identifies those as appropriate for their needs.

B. Compliance with Standards

Compliance with standards is generally achieved through
some form of assurance [26], which generally can be achieved
by a compliance process or by audit. Audit is expensive if
done well, thus compliance through the use of checklists is the
usual method chosen, but this process brings weaknesses with
it [27]. By tightening up information flows within the system,
and by providing rigorous audit trails, our proposed solution
seeks to maximise assurance, thus leading to compliance in a
much more accurate and cost effective way.

C. Audit Issues

There are many audit issues which need to be addressed
[28], not least surrounding the use of the humble audit trail
[29]. In a forthcoming paper, we outline in more detail how
our proposed system will tackle this key issue with a much
more rigorous approach.

D. Management Approach

Cloud ecosystems involve far more actors than conventional
systems, and it is important to recognise that many of these
actors will have differing agendas [30]. Our proposed approach
will seek to minimise the impact of third party actors by
reducing the opportunity for these actors to adversely influence
the effectiveness of the security approach.

E. Technical Complexity of Cloud

There is no doubt that distributed systems are highly
complex, and that cloud ecosystems are, by their nature, far
more complex [31]. We propose to tackle this issue through
simplification of how the system is constructed, in order to
minimise the attack surface.

F. Measurement and monitoring

As an adjunct to a provable level of security [32], it is
necessary to measure and monitor what is happening with a
system. To that end, our proposed system will, by default, pro-
vide a considerable armoury of measurement and monitoring
capabilities, which will allow users to be satisfied of the level
of security they have achieved, and will continue to achieve
through use of the system.

G. The threat environment

This is a major and very worrying issue, which continues to
evolve day by day. Our proposed approach will seek to tackle
this through minimising the attack surface, minimising access
routes to attackers, and generally making life difficult for the
attackers. This is an issue that will bear much ongoing scrutiny
by the research community in order to try to keep ahead of
the attackers.

IX. INITIAL THOUGHTS ON PENETRATION TESTING

Penetration testers often refer to the OWASP foundation
Top 10 report, see Table II below for details of the most
used attack techniques. In its current 2013 installation, two
vulnerabilities—A5-Security Misconfiguration and A9-Using
Known Vulnerable Components—are directly related to the
rich landscape of available server-side functions which com-
monly are neither minimized nor properly configured. Re-
cent years have given rise to opinionated frameworks, i.e.
frameworks that guide developers with sensible security de-
faults. Their security measures efficiently reduce threats from
common attack vectors, e.g. A1-Injection or A2-Cross-Site
Scripting, but those frameworks themselves can introduce
vulnerabilities, as OWASP noted with its introduction of A9
as “the growth and depth of component based development
has significantly increased the risk of using known vulnerable
components”.

2013 Code Threat
A1 Injection Attacks
A2 Broken Authentication and Session Management
A3 Cross Site Scripting (XSS)
A4 Insecure Direct Object References
A5 Security Misconfiguration
A6 Sensitive Data Exposure
A7 Missing Function Level Access Control
A8 Cross Site Request Forgery (CSRF)
A9 Using Components with Known Vulnerabilities

A10 Unvalidated Redirects and Forwards

TABLE II
OWASP TOP TEN WEB VULNERABILITIES — 2013

[33]



The Unikernel approach implicitly minimizes infrastructure
— runtime environment, and libraries as well as operating
system shells — and thus reduces exposure to attack vectors
A5 and A9. In addition, their single-process paradigm enforces
beneficial architecture design decisions that yields systems
with clearer separation-of-concerns. Given the rise of opinion-
ated frameworks, we envision a web-development framework
that de-constructs high-level workflows into separate uniker-
nels, structures communication between those, and provides
sensible security defaults. We assume that such a system
of unikernels can solve complex web-application workflows
in a secure manner without negatively impacting developer’s
productivity during development and debugging. We address
this area in much more depth in our next paper.

X. CONCLUSIONS

In this paper, we have introduced a framework of definitions
and metrics for classifying unikernel systems. We have started
the process of developing a formal approach to describing
our framework, and have considered how such a theoretical
framework might provide a more secure approach to the
challenging issues of cloud security and privacy.

We have proposed a novel means of significantly reducing
the attack surface for a cloud based system, removing in
the process many classic attack vectors. We consider the
architecture of the proposed system and its resilience to attack
in much more depth in our next paper.

This will be followed by the need to look at, and solve, the
challenge presented by audit trail issues. This, in turn, raises
the need to address secure internal communication, access
logging and log storage, and provision for the need to maintain
a strong forensic trail. Once we have the security basics we
are looking for in place, we can then turn our attention to a
robust approach to privacy.
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